metadata
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
model_file: model.pkl
widget:
structuredData:
x0:
- -0.09914599897912607
- 0.1924502175495108
- -0.17512599701971115
x1:
- -1.3527180038544737
- -0.30254418369353936
- -0.3432808784971574
x10:
- -1.033043867154581
- 1.181705677961924
- -0.9707375350979036
x11:
- -0.20058976250553548
- -0.4075697886243593
- 0.6689385877105022
x12:
- 1.1264447260202237
- -0.3277542910601845
- -0.7061243553947382
x13:
- 2.3578550805452707
- -0.2452873082756669
- 0.16449778472088433
x14:
- -0.16970349843770105
- 0.15845033365719116
- 0.6702026662867782
x15:
- 1.02155174900202
- -0.4957105400056871
- 0.3067590970166067
x16:
- 0.6475392302343093
- -1.1039038751689478
- 0.7252174341663654
x17:
- -0.6561708760276103
- 0.4740018109547748
- 0.465681500410126
x18:
- -0.6490963010371028
- 0.17088731040051813
- -0.17090270391075216
x19:
- 1.993556271321547
- -0.8900413826773769
- 0.4823497456924965
x2:
- -0.08333069468143207
- -0.5776679970917816
- 0.4719859556084112
x20:
- 0.38373337482281333
- 0.11724727885071742
- 0.41793176854856023
x21:
- -0.48219399953359454
- 0.5483595851446571
- -0.2845084323579843
x22:
- 0.6002099386032473
- -0.3328169335193628
- -0.1177130496330338
x23:
- -0.9986427796510361
- -0.12805445675530894
- 0.16764132064699072
x24:
- 0.9191079842956807
- -0.2904321748144559
- 0.9305255321835336
x25:
- -1.0662088112874974
- -0.5211282845791263
- -0.4395435923307972
x26:
- 0.07671124580480018
- 0.830067710593458
- 0.10148248620612801
x27:
- -0.19394704099684984
- 0.3655010965468254
- 0.2082667800019003
x28:
- -1.06070986806479
- 0.45059914693412395
- -0.42221731060136036
x29:
- -0.49547996576705416
- 0.293080871191101
- -0.7124529042788277
x3:
- 0.40319634268672655
- -0.7266844038748933
- -0.4392535240984599
x30:
- 0.3177776541070613
- -0.6555347490121567
- 0.6992894776600148
x31:
- 0.36132913089368796
- -0.5052005518828991
- -0.29502005278945825
x32:
- -1.5275287471841141
- 0.6835310518117088
- -0.852342002620441
x33:
- 0.41861643726463144
- 0.24432341138030303
- 0.28970967818031484
x34:
- -0.5635425334957935
- -0.057994651130336465
- -0.5481205839673382
x35:
- 0.6952237303944357
- -0.2186268698466881
- 1.083122777048039
x36:
- 0.7923281272792859
- -0.27781559530809646
- 0.7338411152759391
x37:
- -2.5752767636847587
- 1.386096372652616
- -0.3566644498671143
x38:
- -0.24870867574122876
- 0.47352314520838223
- 0.5234704003548943
x39:
- -0.1901453323468956
- -0.20338282797456578
- 0.8470486651132534
x4:
- -0.5374409606451687
- -0.45754391548594736
- 0.27538071985784895
x5:
- -1.7151691480844589
- 1.5828928158435347
- -0.47142929432970415
x6:
- -0.5429735469430116
- 0.24865361490379212
- 0.10442729092365317
x7:
- 1.5994259033001812
- -1.1704887195126548
- 0.5751493156703039
x8:
- 0.5660448068869487
- -0.14629006117952106
- -0.7940429338085028
x9:
- -0.14997228968462223
- 0.9027177003558653
- 0.21863455413984226
Model description
[More Information Needed]
Intended uses & limitations
[More Information Needed]
Training Procedure
Hyperparameters
The model is trained with below hyperparameters.
Click to expand
Hyperparameter | Value |
---|---|
objective | binary:logistic |
use_label_encoder | |
base_score | 0.5 |
booster | gbtree |
callbacks | |
colsample_bylevel | 1 |
colsample_bynode | 1 |
colsample_bytree | 1 |
early_stopping_rounds | |
enable_categorical | False |
eval_metric | logloss |
feature_types | |
gamma | 3 |
gpu_id | -1 |
grow_policy | depthwise |
importance_type | |
interaction_constraints | |
learning_rate | 0.1 |
max_bin | 256 |
max_cat_threshold | 64 |
max_cat_to_onehot | 4 |
max_delta_step | 0 |
max_depth | 6 |
max_leaves | 0 |
min_child_weight | 1 |
missing | nan |
monotone_constraints | () |
n_estimators | 250 |
n_jobs | 0 |
num_parallel_tree | 1 |
predictor | auto |
random_state | 1 |
reg_alpha | 0 |
reg_lambda | 1 |
sampling_method | uniform |
scale_pos_weight | 10 |
subsample | 0.8 |
tree_method | exact |
validate_parameters | 1 |
verbosity |
Model Plot
The model plot is below.
XGBClassifier(base_score=0.5, booster='gbtree', callbacks=None,colsample_bylevel=1, colsample_bynode=1, colsample_bytree=1,early_stopping_rounds=None, enable_categorical=False,eval_metric='logloss', feature_types=None, gamma=3, gpu_id=-1,grow_policy='depthwise', importance_type=None,interaction_constraints='', learning_rate=0.1, max_bin=256,max_cat_threshold=64, max_cat_to_onehot=4, max_delta_step=0,max_depth=6, max_leaves=0, min_child_weight=1, missing=nan,monotone_constraints='()', n_estimators=250, n_jobs=0,num_parallel_tree=1, predictor='auto', random_state=1, ...)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
XGBClassifier(base_score=0.5, booster='gbtree', callbacks=None,colsample_bylevel=1, colsample_bynode=1, colsample_bytree=1,early_stopping_rounds=None, enable_categorical=False,eval_metric='logloss', feature_types=None, gamma=3, gpu_id=-1,grow_policy='depthwise', importance_type=None,interaction_constraints='', learning_rate=0.1, max_bin=256,max_cat_threshold=64, max_cat_to_onehot=4, max_delta_step=0,max_depth=6, max_leaves=0, min_child_weight=1, missing=nan,monotone_constraints='()', n_estimators=250, n_jobs=0,num_parallel_tree=1, predictor='auto', random_state=1, ...)
Evaluation Results
[More Information Needed]
How to Get Started with the Model
[More Information Needed]
Model Card Authors
This model card is written by following authors:
[More Information Needed]
Model Card Contact
You can contact the model card authors through following channels: [More Information Needed]
Citation
Below you can find information related to citation.
BibTeX:
[More Information Needed]
model_card_authors
Moro abdul Wahab
model_description
ML classification model to predict or identify failures in a generator