PEFT
Safetensors
llama
axolotl
Generated from Trainer

Built with Axolotl

See axolotl config

axolotl version: 0.7.0

base_model: meta-llama/Llama-3.2-3B-Instruct
hub_model_id: morsmordre/m-3b-v1-iteration-00-sf-xlam-07

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: minpeter/xlam-function-calling-60k-hermes
    data_files:
      - result.parquet
    type: chat_template
    chat_template: llama3
    field_messages: conversations
    message_field_role: from
    message_field_content: value
    shards: 30
  - path: minpeter/xlam-irrelevance-7.5k-qwen2.5-72b-distill-hermes
    data_files:
      - result.parquet
    type: chat_template
    chat_template: llama3
    field_messages: conversations
    message_field_role: from
    message_field_content: value
    shards: 5

chat_template: llama3

dataset_prepared_path: last_run_prepared

output_dir: ./output

adapter: lora
lora_model_dir:

sequence_len: 4096
pad_to_sequence_len: true
sample_packing: true

val_set_size: 0.05
eval_sample_packing: true
evals_per_epoch: 3

lora_r: 16
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out:
lora_target_modules:
  - gate_proj
  - down_proj
  - up_proj
  - q_proj
  - v_proj
  - k_proj
  - o_proj

wandb_project: "axolotl"
wandb_entity: "kasfiekfs-e"
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 2
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3

warmup_steps: 10
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:

special_tokens:
  pad_token: "<|finetune_right_pad_id|>"

m-3b-v1-iteration-00-sf-xlam-07

This model is a fine-tuned version of meta-llama/Llama-3.2-3B-Instruct on the minpeter/xlam-function-calling-60k-hermes and the minpeter/xlam-irrelevance-7.5k-qwen2.5-72b-distill-hermes datasets. It achieves the following results on the evaluation set:

  • Loss: 0.2159

Model description

Test Category Adapter Accuracy Base Model Accuracy Improvement
irrelevance 76.25% 72.08% +4.17%
parallel_multiple 89.50% 10.00% +79.50%
parallel 89.50% 11.50% +78.00%
simple 92.75% 24.75% +68.00%
multiple 93.50% 20.00% +73.50%

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • optimizer: Use OptimizerNames.ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 1.0

Training results

Training Loss Epoch Step Validation Loss
0.8199 0.0072 1 0.6489
0.0898 0.3381 47 0.2228
0.2114 0.6763 94 0.2159

Framework versions

  • PEFT 0.14.0
  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
11
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for morsmordre/m-3b-v1-iteration-00-sf-xlam-07

Adapter
(209)
this model

Datasets used to train morsmordre/m-3b-v1-iteration-00-sf-xlam-07