Built with Axolotl

See axolotl config

axolotl version: 0.7.0

base_model: meta-llama/Llama-3.2-3B-Instruct
hub_model_id: morsmordre/m-3b-v1-iteration-00-sf-xlam-10

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  # 0.5k
  - path: minpeter/xlam-function-calling-60k-hermes
    data_files:
      - result.parquet
    type: chat_template
    chat_template: llama3
    field_messages: conversations
    message_field_role: from
    message_field_content: value
    shards: 120

  # 0.35k
  - path: minpeter/xlam-irrelevance-7.5k-qwen2.5-72b-distill-hermes
    data_files:
      - result.parquet
    type: chat_template
    chat_template: llama3
    field_messages: conversations
    message_field_role: from
    message_field_content: value
    shards: 15

  #  1.2k
  - path: minpeter/hermes-function-calling-v1-jsonl
    data_files:
      - func-calling-singleturn.jsonl
      - func-calling.jsonl
    type: chat_template
    chat_template: llama3
    field_messages: conversations
    message_field_role: from
    message_field_content: value
    shards: 3

  # 1k
  - path: minpeter/hermes-function-calling-v1-jsonl
    data_files:
      - glaive-function-calling-5k.jsonl
    type: chat_template
    chat_template: llama3
    field_messages: conversations
    message_field_role: from
    message_field_content: value
    shards: 5

chat_template: llama3

dataset_prepared_path: last_run_prepared

output_dir: ./output

adapter: lora
lora_model_dir:

sequence_len: 4096
pad_to_sequence_len: true
sample_packing: true

val_set_size: 0.05
eval_sample_packing: true
evals_per_epoch: 3

lora_r: 8
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out:
lora_target_modules:
  - gate_proj
  - down_proj
  - up_proj
  - q_proj
  - v_proj
  - k_proj
  - o_proj

wandb_project: "axolotl"
wandb_entity: "kasfiekfs-e"
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 2
micro_batch_size: 2
num_epochs: 2
optimizer: adamw_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3

warmup_steps: 10
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:

special_tokens:
  pad_token: "<|finetune_right_pad_id|>"

m-3b-v1-iteration-00-sf-xlam-10

This model is a fine-tuned version of meta-llama/Llama-3.2-3B-Instruct on the minpeter/xlam-function-calling-60k-hermes, the minpeter/xlam-irrelevance-7.5k-qwen2.5-72b-distill-hermes, the minpeter/hermes-function-calling-v1-jsonl and the minpeter/hermes-function-calling-v1-jsonl datasets. It achieves the following results on the evaluation set:

  • Loss: 0.3335

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • optimizer: Use OptimizerNames.ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 2.0

Training results

Training Loss Epoch Step Validation Loss
0.5354 0.0039 1 0.7727
0.4667 0.3327 85 0.3745
0.1858 0.6654 170 0.3515
0.5982 0.9980 255 0.3440
0.1452 1.3288 340 0.3389
0.2287 1.6614 425 0.3344
0.1441 1.9941 510 0.3335

Framework versions

  • PEFT 0.14.0
  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
18
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for morsmordre/m-3b-v1-iteration-00-sf-xlam-10

Adapter
(209)
this model

Datasets used to train morsmordre/m-3b-v1-iteration-00-sf-xlam-10