fine_tuned_bert
This model is a fine-tuned version of google-bert/bert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3681
- F1: 0.7857
- Precision: 0.8462
- Recall: 0.7333
- Accuracy: 0.8966
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Precision | Recall | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 15 | 0.4987 | 0.6875 | 0.6471 | 0.7333 | 0.8276 |
No log | 2.0 | 30 | 0.4779 | 0.625 | 0.5882 | 0.6667 | 0.7931 |
No log | 3.0 | 45 | 0.4019 | 0.5833 | 0.7778 | 0.4667 | 0.8276 |
No log | 4.0 | 60 | 0.6146 | 0.6522 | 0.4839 | 1.0 | 0.7241 |
No log | 5.0 | 75 | 0.3311 | 0.7143 | 0.7692 | 0.6667 | 0.8621 |
No log | 6.0 | 90 | 0.3877 | 0.7568 | 0.6364 | 0.9333 | 0.8448 |
No log | 7.0 | 105 | 0.3971 | 0.7778 | 0.6667 | 0.9333 | 0.8621 |
No log | 8.0 | 120 | 0.2041 | 0.8966 | 0.9286 | 0.8667 | 0.9483 |
No log | 9.0 | 135 | 0.2831 | 0.875 | 0.8235 | 0.9333 | 0.9310 |
No log | 10.0 | 150 | 0.2868 | 0.875 | 0.8235 | 0.9333 | 0.9310 |
Framework versions
- Transformers 4.38.1
- Pytorch 2.2.1+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2
- Downloads last month
- 107
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for morten-j/fine_tuned_mBERT_old
Base model
google-bert/bert-base-multilingual-cased