Model Card for Model ID

How to run in llama.cpp

./main -t 10 -ngl 32 -m persian_llama_7b.Q4_K_M.gguf --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Instruction: یک شعر حماسی در مورد کوه دماوند بگو ### Input:  ### Response:"

Change -t 10 to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use -t 8.

Change -ngl 32 to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.

Tto have a chat-style conversation, replace the -p <PROMPT> argument with -i -ins

How to run in text-generation-webui

Further instructions here: text-generation-webui/docs/llama.cpp-models.md.

How to run using LangChain

Instalation on CPU
pip install llama-cpp-python
Instalation on GPU
CMAKE_ARGS="-DLLAMA_CUBLAS=on" FORCE_CMAKE=1 pip install llama-cpp-python
from langchain.llms import LlamaCpp
from langchain import PromptTemplate, LLMChain
from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler

n_gpu_layers = 40 # Change this value based on your model and your GPU VRAM pool.
n_batch = 512 # Should be between 1 and n_ctx, consider the amount of VRAM in your GPU.
n_ctx=2048

callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])

# Make sure the model path is correct for your system!
llm = LlamaCpp(
    model_path="./persian_llama_7b.Q4_K_M.gguf",
    n_gpu_layers=n_gpu_layers, n_batch=n_batch,
    callback_manager=callback_manager,
    verbose=True,
    n_ctx=n_ctx
)

llm("""### Instruction:
یک شعر حماسی در مورد کوه دماوند بگو

### Input:

### Response:""")

For more information refer LangChain

Downloads last month
108
GGUF
Model size
6.9B params
Architecture
llama

4-bit

8-bit

Inference API
Unable to determine this model's library. Check the docs .