segformer_b1_finetuned_segment_pv_p100_4batch
This model is a fine-tuned version of nvidia/segformer-b1-finetuned-ade-512-512 on the mouadenna/satellite_PV_dataset_train_test_v1 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0072
- Mean Iou: 0.8692
- Precision: 0.9162
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 40
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Precision |
---|---|---|---|---|---|
0.4877 | 1.0 | 917 | 0.2178 | 0.5326 | 0.6037 |
0.0992 | 2.0 | 1834 | 0.0258 | 0.7353 | 0.7913 |
0.022 | 3.0 | 2751 | 0.0119 | 0.7764 | 0.9267 |
0.0106 | 4.0 | 3668 | 0.0084 | 0.8093 | 0.8316 |
0.0069 | 5.0 | 4585 | 0.0070 | 0.8327 | 0.8698 |
0.0054 | 6.0 | 5502 | 0.0057 | 0.8431 | 0.8829 |
0.0044 | 7.0 | 6419 | 0.0055 | 0.8494 | 0.8877 |
0.0039 | 8.0 | 7336 | 0.0059 | 0.8474 | 0.9002 |
0.0036 | 9.0 | 8253 | 0.0056 | 0.8505 | 0.8894 |
0.0031 | 10.0 | 9170 | 0.0054 | 0.8575 | 0.8994 |
0.0031 | 11.0 | 10087 | 0.0051 | 0.8620 | 0.9190 |
0.0027 | 12.0 | 11004 | 0.0053 | 0.8646 | 0.9043 |
0.0026 | 13.0 | 11921 | 0.0059 | 0.8643 | 0.9275 |
0.0028 | 14.0 | 12838 | 0.0055 | 0.8641 | 0.9131 |
0.0025 | 15.0 | 13755 | 0.0053 | 0.8661 | 0.9120 |
0.0023 | 16.0 | 14672 | 0.0056 | 0.8644 | 0.9107 |
0.0022 | 17.0 | 15589 | 0.0052 | 0.8668 | 0.9125 |
0.0022 | 18.0 | 16506 | 0.0054 | 0.8700 | 0.9143 |
0.0022 | 19.0 | 17423 | 0.0059 | 0.8685 | 0.9180 |
0.002 | 20.0 | 18340 | 0.0057 | 0.8696 | 0.9157 |
0.0019 | 21.0 | 19257 | 0.0061 | 0.8682 | 0.9136 |
0.0019 | 22.0 | 20174 | 0.0069 | 0.8606 | 0.9262 |
0.0019 | 23.0 | 21091 | 0.0062 | 0.8700 | 0.9172 |
0.0018 | 24.0 | 22008 | 0.0061 | 0.8682 | 0.9258 |
0.0019 | 25.0 | 22925 | 0.0062 | 0.8669 | 0.9124 |
0.002 | 26.0 | 23842 | 0.0065 | 0.8672 | 0.9206 |
0.0017 | 27.0 | 24759 | 0.0062 | 0.8688 | 0.9108 |
0.0016 | 28.0 | 25676 | 0.0066 | 0.8686 | 0.9154 |
0.0016 | 29.0 | 26593 | 0.0066 | 0.8704 | 0.9175 |
0.0016 | 30.0 | 27510 | 0.0068 | 0.8664 | 0.9127 |
0.0015 | 31.0 | 28427 | 0.0069 | 0.8679 | 0.9150 |
0.0015 | 32.0 | 29344 | 0.0065 | 0.8691 | 0.9196 |
0.0015 | 33.0 | 30261 | 0.0069 | 0.8676 | 0.9130 |
0.0014 | 34.0 | 31178 | 0.0067 | 0.8691 | 0.9164 |
0.0014 | 35.0 | 32095 | 0.0071 | 0.8679 | 0.9153 |
0.0014 | 36.0 | 33012 | 0.0072 | 0.8687 | 0.9127 |
0.0014 | 37.0 | 33929 | 0.0073 | 0.8689 | 0.9151 |
0.0014 | 38.0 | 34846 | 0.0069 | 0.8696 | 0.9183 |
0.0014 | 39.0 | 35763 | 0.0070 | 0.8694 | 0.9163 |
0.0013 | 40.0 | 36680 | 0.0072 | 0.8692 | 0.9162 |
Framework versions
- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 193
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for mouadenna/segformer_b1_finetuned_segment_pv_p100_4batch
Base model
nvidia/segformer-b1-finetuned-ade-512-512