metadata
library_name: transformers
base_model: layoutlmv3
tags:
- generated_from_trainer
datasets:
- mp-02/cord-sroie
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv3-base-cord-sroie
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: mp-02/cord-sroie
type: mp-02/cord-sroie
metrics:
- name: Precision
type: precision
value: 0.9399720800372267
- name: Recall
type: recall
value: 0.9465791940018744
- name: F1
type: f1
value: 0.9432640672425869
- name: Accuracy
type: accuracy
value: 0.9813340410474168
layoutlmv3-base-cord-sroie
This model is a fine-tuned version of layoutlmv3 on the mp-02/cord-sroie dataset. It achieves the following results on the evaluation set:
- Loss: 0.0970
- Precision: 0.9400
- Recall: 0.9466
- F1: 0.9433
- Accuracy: 0.9813
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 4000
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 2.2222 | 100 | 0.3258 | 0.8171 | 0.7685 | 0.7921 | 0.9363 |
No log | 4.4444 | 200 | 0.1516 | 0.9078 | 0.8946 | 0.9011 | 0.9694 |
No log | 6.6667 | 300 | 0.1085 | 0.9315 | 0.9175 | 0.9245 | 0.9761 |
No log | 8.8889 | 400 | 0.1000 | 0.9382 | 0.9456 | 0.9419 | 0.9817 |
0.4015 | 11.1111 | 500 | 0.0970 | 0.9400 | 0.9466 | 0.9433 | 0.9813 |
0.4015 | 13.3333 | 600 | 0.1064 | 0.9505 | 0.9358 | 0.9431 | 0.9814 |
0.4015 | 15.5556 | 700 | 0.1095 | 0.9465 | 0.9372 | 0.9418 | 0.9812 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1