mp-02's picture
End of training
fecf7f4 verified
|
raw
history blame
2.58 kB
metadata
library_name: transformers
base_model: layoutlmv3
tags:
  - generated_from_trainer
datasets:
  - mp-02/cord-sroie
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: layoutlmv3-base-cord-sroie
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: mp-02/cord-sroie
          type: mp-02/cord-sroie
        metrics:
          - name: Precision
            type: precision
            value: 0.9399720800372267
          - name: Recall
            type: recall
            value: 0.9465791940018744
          - name: F1
            type: f1
            value: 0.9432640672425869
          - name: Accuracy
            type: accuracy
            value: 0.9813340410474168

layoutlmv3-base-cord-sroie

This model is a fine-tuned version of layoutlmv3 on the mp-02/cord-sroie dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0970
  • Precision: 0.9400
  • Recall: 0.9466
  • F1: 0.9433
  • Accuracy: 0.9813

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 4000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 2.2222 100 0.3258 0.8171 0.7685 0.7921 0.9363
No log 4.4444 200 0.1516 0.9078 0.8946 0.9011 0.9694
No log 6.6667 300 0.1085 0.9315 0.9175 0.9245 0.9761
No log 8.8889 400 0.1000 0.9382 0.9456 0.9419 0.9817
0.4015 11.1111 500 0.0970 0.9400 0.9466 0.9433 0.9813
0.4015 13.3333 600 0.1064 0.9505 0.9358 0.9431 0.9814
0.4015 15.5556 700 0.1095 0.9465 0.9372 0.9418 0.9812

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu118
  • Datasets 2.21.0
  • Tokenizers 0.19.1