File size: 2,614 Bytes
6332857
8ceaebc
6332857
 
8ceaebc
 
6332857
 
 
 
 
 
47c8538
8ceaebc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6332857
 
 
 
 
47c8538
6332857
8ceaebc
6332857
8ceaebc
 
 
 
 
6332857
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ceaebc
254a705
 
6332857
 
 
8ceaebc
6332857
 
 
8ceaebc
 
 
 
 
 
 
 
 
 
6332857
 
 
 
8ceaebc
254a705
6332857
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
base_model: layoutlmv3
tags:
- generated_from_trainer
datasets:
- mp-02/cord
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv3-finetuned-cord
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: mp-02/cord
      type: mp-02/cord
    metrics:
    - name: Precision
      type: precision
      value: 0.9572519083969465
    - name: Recall
      type: recall
      value: 0.9736024844720497
    - name: F1
      type: f1
      value: 0.9653579676674365
    - name: Accuracy
      type: accuracy
      value: 0.9673174872665535
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# layoutlmv3-finetuned-cord

This model is a fine-tuned version of [layoutlmv3](https://huggingface.co/layoutlmv3) on the mp-02/cord dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1831
- Precision: 0.9573
- Recall: 0.9736
- F1: 0.9654
- Accuracy: 0.9673

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2000

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 3.125  | 250  | 0.7551          | 0.7974    | 0.8587 | 0.8269 | 0.8544   |
| 1.1001        | 6.25   | 500  | 0.3822          | 0.8846    | 0.9286 | 0.9061 | 0.9215   |
| 1.1001        | 9.375  | 750  | 0.2750          | 0.9334    | 0.9581 | 0.9456 | 0.9444   |
| 0.2309        | 12.5   | 1000 | 0.2072          | 0.9439    | 0.9674 | 0.9555 | 0.9605   |
| 0.2309        | 15.625 | 1250 | 0.1934          | 0.9500    | 0.9728 | 0.9613 | 0.9652   |
| 0.1003        | 18.75  | 1500 | 0.1898          | 0.9602    | 0.9736 | 0.9668 | 0.9665   |
| 0.1003        | 21.875 | 1750 | 0.2032          | 0.9542    | 0.9705 | 0.9623 | 0.9631   |
| 0.0637        | 25.0   | 2000 | 0.1831          | 0.9573    | 0.9736 | 0.9654 | 0.9673   |


### Framework versions

- Transformers 4.42.4
- Pytorch 2.4.0+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1