metadata
library_name: transformers
base_model: layoutlmv3
tags:
- generated_from_trainer
datasets:
- mp-02/cord
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv3-finetuned-cord
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: mp-02/cord
type: mp-02/cord
metrics:
- name: Precision
type: precision
value: 0.9609494640122511
- name: Recall
type: recall
value: 0.9743788819875776
- name: F1
type: f1
value: 0.9676175790285273
- name: Accuracy
type: accuracy
value: 0.9690152801358234
layoutlmv3-finetuned-cord
This model is a fine-tuned version of layoutlmv3 on the mp-02/cord dataset. It achieves the following results on the evaluation set:
- Loss: 0.1800
- Precision: 0.9609
- Recall: 0.9744
- F1: 0.9676
- Accuracy: 0.9690
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 1000
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.25 | 100 | 0.5802 | 0.8140 | 0.8696 | 0.8408 | 0.8574 |
No log | 2.5 | 200 | 0.2946 | 0.9013 | 0.9433 | 0.9219 | 0.9329 |
No log | 3.75 | 300 | 0.2259 | 0.9409 | 0.9635 | 0.9521 | 0.9571 |
No log | 5.0 | 400 | 0.2496 | 0.9376 | 0.9565 | 0.9470 | 0.9482 |
0.4497 | 6.25 | 500 | 0.2174 | 0.9399 | 0.9596 | 0.9497 | 0.9546 |
0.4497 | 7.5 | 600 | 0.1812 | 0.9535 | 0.9713 | 0.9623 | 0.9648 |
0.4497 | 8.75 | 700 | 0.1699 | 0.9587 | 0.9720 | 0.9653 | 0.9699 |
0.4497 | 10.0 | 800 | 0.1810 | 0.9625 | 0.9752 | 0.9688 | 0.9690 |
0.4497 | 11.25 | 900 | 0.1789 | 0.9647 | 0.9767 | 0.9707 | 0.9694 |
0.0416 | 12.5 | 1000 | 0.1800 | 0.9609 | 0.9744 | 0.9676 | 0.9690 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1