mp-02's picture
End of training
5d66567 verified
|
raw
history blame
2.82 kB
metadata
library_name: transformers
base_model: layoutlmv3
tags:
  - generated_from_trainer
datasets:
  - mp-02/cord
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: layoutlmv3-finetuned-cord
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: mp-02/cord
          type: mp-02/cord
        metrics:
          - name: Precision
            type: precision
            value: 0.9609494640122511
          - name: Recall
            type: recall
            value: 0.9743788819875776
          - name: F1
            type: f1
            value: 0.9676175790285273
          - name: Accuracy
            type: accuracy
            value: 0.9690152801358234

layoutlmv3-finetuned-cord

This model is a fine-tuned version of layoutlmv3 on the mp-02/cord dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1800
  • Precision: 0.9609
  • Recall: 0.9744
  • F1: 0.9676
  • Accuracy: 0.9690

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 10
  • eval_batch_size: 10
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.25 100 0.5802 0.8140 0.8696 0.8408 0.8574
No log 2.5 200 0.2946 0.9013 0.9433 0.9219 0.9329
No log 3.75 300 0.2259 0.9409 0.9635 0.9521 0.9571
No log 5.0 400 0.2496 0.9376 0.9565 0.9470 0.9482
0.4497 6.25 500 0.2174 0.9399 0.9596 0.9497 0.9546
0.4497 7.5 600 0.1812 0.9535 0.9713 0.9623 0.9648
0.4497 8.75 700 0.1699 0.9587 0.9720 0.9653 0.9699
0.4497 10.0 800 0.1810 0.9625 0.9752 0.9688 0.9690
0.4497 11.25 900 0.1789 0.9647 0.9767 0.9707 0.9694
0.0416 12.5 1000 0.1800 0.9609 0.9744 0.9676 0.9690

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu118
  • Datasets 2.21.0
  • Tokenizers 0.19.1