|
--- |
|
library_name: transformers |
|
base_model: layoutlmv3 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- mp-02/cord |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: layoutlmv3-finetuned-cord |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: mp-02/cord |
|
type: mp-02/cord |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.963084495488105 |
|
- name: Recall |
|
type: recall |
|
value: 0.9726594863297432 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9678483099752679 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9688929551692589 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# layoutlmv3-finetuned-cord |
|
|
|
This model is a fine-tuned version of [layoutlmv3](https://huggingface.co/layoutlmv3) on the mp-02/cord dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1351 |
|
- Precision: 0.9631 |
|
- Recall: 0.9727 |
|
- F1: 0.9678 |
|
- Accuracy: 0.9689 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 10 |
|
- eval_batch_size: 10 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 2000 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 3.125 | 250 | 0.5767 | 0.8636 | 0.8915 | 0.8773 | 0.8925 | |
|
| 1.0201 | 6.25 | 500 | 0.2739 | 0.9275 | 0.9536 | 0.9404 | 0.9465 | |
|
| 1.0201 | 9.375 | 750 | 0.1894 | 0.9462 | 0.9611 | 0.9536 | 0.9602 | |
|
| 0.1892 | 12.5 | 1000 | 0.1522 | 0.9592 | 0.9727 | 0.9659 | 0.9689 | |
|
| 0.1892 | 15.625 | 1250 | 0.1537 | 0.9535 | 0.9677 | 0.9605 | 0.9652 | |
|
| 0.0813 | 18.75 | 1500 | 0.1351 | 0.9631 | 0.9727 | 0.9678 | 0.9689 | |
|
| 0.0813 | 21.875 | 1750 | 0.1406 | 0.9607 | 0.9718 | 0.9662 | 0.9689 | |
|
| 0.0535 | 25.0 | 2000 | 0.1396 | 0.9599 | 0.9710 | 0.9654 | 0.9675 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.0+cu118 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|