mradermacher's picture
auto-patch README.md
13be1c8 verified
|
raw
history blame
2.78 kB
---
base_model: LeroyDyer/Mixtral_AI_CyberTron_Ultra
datasets:
- gretelai/synthetic_text_to_sql
- HuggingFaceTB/cosmopedia
- teknium/OpenHermes-2.5
- Open-Orca/SlimOrca
- Open-Orca/OpenOrca
- cognitivecomputations/dolphin-coder
- databricks/databricks-dolly-15k
- yahma/alpaca-cleaned
- uonlp/CulturaX
- mwitiderrick/SwahiliPlatypus
- swahili
- Rogendo/English-Swahili-Sentence-Pairs
- ise-uiuc/Magicoder-Evol-Instruct-110K
- meta-math/MetaMathQA
exported_from: LeroyDyer/Mixtral_AI_CyberTron_Ultra
language:
- en
library_name: transformers
license: apache-2.0
quantized_by: mradermacher
tags:
- text-generation-inference
- transformers
- unsloth
- mistral
- trl
- code
- 'medical '
- farmer
- doctor
- Mega-Series
- Cyber-Series
- Role-Play
- Self-Rag
- ThinkingBot
---
## About
<!-- ### quantize_version: 1 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: -->
<!-- ### vocab_type: -->
static quants of https://huggingface.co/LeroyDyer/Mixtral_AI_CyberTron_Ultra
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberTron_Ultra-GGUF/resolve/main/Mixtral_AI_CyberTron_Ultra.IQ3_S.gguf) | IQ3_S | 3.3 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberTron_Ultra-GGUF/resolve/main/Mixtral_AI_CyberTron_Ultra.IQ3_M.gguf) | IQ3_M | 3.4 | |
| [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberTron_Ultra-GGUF/resolve/main/Mixtral_AI_CyberTron_Ultra.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Mixtral_AI_CyberTron_Ultra-GGUF/resolve/main/Mixtral_AI_CyberTron_Ultra.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->