mradermacher's picture
auto-patch README.md
1b00a3e verified
|
raw
history blame
3.23 kB
---
base_model: MoxoffSpA/Moxoff-Phi3Mini-KTO
datasets: argilla/ultrafeedback-binarized-preferences-cleaned
language:
- en
library_name: transformers
license: mit
quantized_by: mradermacher
tags:
- kto
- phi3
- chatml
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/MoxoffSpA/Moxoff-Phi3Mini-KTO
<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/Moxoff-Phi3Mini-KTO-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Moxoff-Phi3Mini-KTO-GGUF/resolve/main/Moxoff-Phi3Mini-KTO.Q2_K.gguf) | Q2_K | 1.5 | |
| [GGUF](https://huggingface.co/mradermacher/Moxoff-Phi3Mini-KTO-GGUF/resolve/main/Moxoff-Phi3Mini-KTO.Q3_K_S.gguf) | Q3_K_S | 1.8 | |
| [GGUF](https://huggingface.co/mradermacher/Moxoff-Phi3Mini-KTO-GGUF/resolve/main/Moxoff-Phi3Mini-KTO.Q3_K_M.gguf) | Q3_K_M | 2.1 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Moxoff-Phi3Mini-KTO-GGUF/resolve/main/Moxoff-Phi3Mini-KTO.Q3_K_L.gguf) | Q3_K_L | 2.2 | |
| [GGUF](https://huggingface.co/mradermacher/Moxoff-Phi3Mini-KTO-GGUF/resolve/main/Moxoff-Phi3Mini-KTO.Q4_K_S.gguf) | Q4_K_S | 2.3 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Moxoff-Phi3Mini-KTO-GGUF/resolve/main/Moxoff-Phi3Mini-KTO.Q4_K_M.gguf) | Q4_K_M | 2.5 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Moxoff-Phi3Mini-KTO-GGUF/resolve/main/Moxoff-Phi3Mini-KTO.Q5_K_S.gguf) | Q5_K_S | 2.7 | |
| [GGUF](https://huggingface.co/mradermacher/Moxoff-Phi3Mini-KTO-GGUF/resolve/main/Moxoff-Phi3Mini-KTO.Q5_K_M.gguf) | Q5_K_M | 2.9 | |
| [GGUF](https://huggingface.co/mradermacher/Moxoff-Phi3Mini-KTO-GGUF/resolve/main/Moxoff-Phi3Mini-KTO.Q6_K.gguf) | Q6_K | 3.2 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Moxoff-Phi3Mini-KTO-GGUF/resolve/main/Moxoff-Phi3Mini-KTO.Q8_0.gguf) | Q8_0 | 4.2 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/Moxoff-Phi3Mini-KTO-GGUF/resolve/main/Moxoff-Phi3Mini-KTO.f16.gguf) | f16 | 7.7 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->