|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: microsoft/conditional-detr-resnet-50 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: detr_finetuned_trashify_box_detector |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# detr_finetuned_trashify_box_detector |
|
|
|
This model is a fine-tuned version of [microsoft/conditional-detr-resnet-50](https://huggingface.co/microsoft/conditional-detr-resnet-50) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.1302 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.05 |
|
- num_epochs: 25 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 101.8783 | 1.0 | 50 | 7.5132 | |
|
| 4.1455 | 2.0 | 100 | 3.0556 | |
|
| 2.5964 | 3.0 | 150 | 2.2737 | |
|
| 2.2773 | 4.0 | 200 | 2.0691 | |
|
| 2.0818 | 5.0 | 250 | 1.8494 | |
|
| 1.9253 | 6.0 | 300 | 1.6872 | |
|
| 1.7802 | 7.0 | 350 | 1.6033 | |
|
| 1.675 | 8.0 | 400 | 1.4511 | |
|
| 1.5263 | 9.0 | 450 | 1.4097 | |
|
| 1.4322 | 10.0 | 500 | 1.3397 | |
|
| 1.386 | 11.0 | 550 | 1.2897 | |
|
| 1.3098 | 12.0 | 600 | 1.2813 | |
|
| 1.248 | 13.0 | 650 | 1.2096 | |
|
| 1.209 | 14.0 | 700 | 1.2200 | |
|
| 1.1757 | 15.0 | 750 | 1.1987 | |
|
| 1.144 | 16.0 | 800 | 1.1757 | |
|
| 1.0732 | 17.0 | 850 | 1.1935 | |
|
| 1.0501 | 18.0 | 900 | 1.1531 | |
|
| 0.9864 | 19.0 | 950 | 1.1576 | |
|
| 0.9941 | 20.0 | 1000 | 1.1513 | |
|
| 0.9589 | 21.0 | 1050 | 1.1450 | |
|
| 0.9279 | 22.0 | 1100 | 1.1355 | |
|
| 0.9071 | 23.0 | 1150 | 1.1233 | |
|
| 0.8851 | 24.0 | 1200 | 1.1338 | |
|
| 0.8709 | 25.0 | 1250 | 1.1302 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.0.dev0 |
|
- Pytorch 2.4.0+cu124 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|