mrdbourke's picture
upload trashify box detection model trained on purely synthetic data
7a837c1 verified
metadata
license: apache-2.0
base_model: microsoft/conditional-detr-resnet-50
tags:
  - generated_from_trainer
model-index:
  - name: trashify-box-detection-model-synthetic-data-only
    results: []

trashify-box-detection-model-synthetic-data-only

This model is a fine-tuned version of microsoft/conditional-detr-resnet-50 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7824

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
67.3985 1.0 118 4.7679
3.2012 2.0 236 2.1811
2.1642 3.0 354 1.6674
1.7756 4.0 472 1.3667
1.5894 5.0 590 1.3178
1.497 6.0 708 1.1129
1.4228 7.0 826 1.1679
1.4065 8.0 944 1.1444
1.4096 9.0 1062 1.1029
1.3762 10.0 1180 1.0651
1.33 11.0 1298 1.0473
1.3183 12.0 1416 1.0753
1.3158 13.0 1534 1.0515
1.2898 14.0 1652 0.9913
1.292 15.0 1770 0.9918
1.2323 16.0 1888 0.9896
1.2356 17.0 2006 1.0034
1.2407 18.0 2124 0.9813
1.2384 19.0 2242 0.9685
1.2229 20.0 2360 0.9606
1.2011 21.0 2478 0.9410
1.1809 22.0 2596 0.9628
1.2145 23.0 2714 0.9707
1.208 24.0 2832 0.9811
1.2109 25.0 2950 0.9749
1.2073 26.0 3068 0.9966
1.1875 27.0 3186 0.9225
1.1786 28.0 3304 0.9692
1.1782 29.0 3422 0.9331
1.1617 30.0 3540 0.9494
1.1636 31.0 3658 0.9176
1.1391 32.0 3776 0.9059
1.1643 33.0 3894 0.9177
1.1486 34.0 4012 0.9351
1.1229 35.0 4130 0.9027
1.11 36.0 4248 0.9060
1.112 37.0 4366 0.8910
1.1112 38.0 4484 0.8954
1.0994 39.0 4602 0.8769
1.0821 40.0 4720 0.9111
1.088 41.0 4838 0.8496
1.049 42.0 4956 0.8694
1.0804 43.0 5074 0.8783
1.0643 44.0 5192 0.8671
1.06 45.0 5310 0.8707
1.0558 46.0 5428 0.8754
1.0448 47.0 5546 0.8606
1.0341 48.0 5664 0.8649
1.0433 49.0 5782 0.8479
1.0211 50.0 5900 0.8530
1.0186 51.0 6018 0.8419
0.9921 52.0 6136 0.8340
1.0261 53.0 6254 0.8279
1.0006 54.0 6372 0.8395
0.9926 55.0 6490 0.8368
0.9965 56.0 6608 0.8197
0.997 57.0 6726 0.8420
0.9638 58.0 6844 0.8309
0.9667 59.0 6962 0.8085
0.9561 60.0 7080 0.8440
0.9654 61.0 7198 0.8254
0.969 62.0 7316 0.8226
0.9621 63.0 7434 0.8033
0.9466 64.0 7552 0.8182
0.9406 65.0 7670 0.8176
0.9365 66.0 7788 0.8037
0.9163 67.0 7906 0.8124
0.9133 68.0 8024 0.8080
0.8986 69.0 8142 0.7981
0.9227 70.0 8260 0.8112
0.9212 71.0 8378 0.8031
0.8991 72.0 8496 0.7998
0.9026 73.0 8614 0.7971
0.8794 74.0 8732 0.7959
0.8874 75.0 8850 0.7961
0.8922 76.0 8968 0.8009
0.8905 77.0 9086 0.7930
0.8785 78.0 9204 0.7991
0.8723 79.0 9322 0.7887
0.8634 80.0 9440 0.7800
0.847 81.0 9558 0.7903
0.8418 82.0 9676 0.7874
0.852 83.0 9794 0.7950
0.8322 84.0 9912 0.7967
0.8489 85.0 10030 0.7806
0.8359 86.0 10148 0.7919
0.8279 87.0 10266 0.7896
0.8453 88.0 10384 0.7926
0.8029 89.0 10502 0.7913
0.8088 90.0 10620 0.7843
0.8269 91.0 10738 0.7820
0.8201 92.0 10856 0.7880
0.8177 93.0 10974 0.7847
0.8224 94.0 11092 0.7869
0.8134 95.0 11210 0.7869
0.799 96.0 11328 0.7866
0.8229 97.0 11446 0.7864
0.7831 98.0 11564 0.7857
0.7936 99.0 11682 0.7835
0.7706 100.0 11800 0.7824

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.2.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1