train_test_step1 / README.md
mrfakename's picture
Upload folder using huggingface_hub
70e6494 verified
metadata
library_name: transformers
tags:
  - generated_from_trainer
datasets:
  - mrfakename/datablend
model-index:
  - name: out_model
    results: []

Built with Axolotl

See axolotl config

axolotl version: 0.6.0

base_model: /home/mainuser/workspace/cotmerge/out_sm

load_in_8bit: false
load_in_4bit: false
strict: false

plugins:
  - axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: true

chat_template: chatml
datasets:
  - path: mrfakename/datablend
    split: train[:25%]
    type: chat_template
    field_messages: conversations
    message_field_role: from
    message_field_content: value

dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./out_model

sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true

adapter:
lora_model_dir:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:
lora_fan_in_fan_out:

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 8
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
flash_attn_cross_entropy: false
flash_attn_rms_norm: true
flash_attn_fuse_qkv: false
flash_attn_fuse_mlp: true

warmup_steps: 100
evals_per_epoch: 0
eval_table_size:
saves_per_epoch: 64
debug:
deepspeed:
deepspeed: /home/mainuser/axolotl/deepspeed_configs/zero2.json
weight_decay: 0.1
#fsdp:
#  - full_shard
special_tokens:
  bos_token: "<s>"
  eos_token: "</s>"
  unk_token: "<unk>"
tokens: # these are delimiters
  - "<|im_start|>"
  - "<|im_end|>"

out_model

This model was trained from scratch on the mrfakename/datablend dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9516

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • total_eval_batch_size: 4
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
7.2093 1.0 430 0.9516

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.21.0