|
--- |
|
language: |
|
- en |
|
library_name: sentence-transformers |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- dataset_size:1K<n<10K |
|
- loss:MatryoshkaLoss |
|
- loss:CoSENTLoss |
|
base_model: distilbert/distilbert-base-uncased |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
- pearson_manhattan |
|
- spearman_manhattan |
|
- pearson_euclidean |
|
- spearman_euclidean |
|
- pearson_dot |
|
- spearman_dot |
|
- pearson_max |
|
- spearman_max |
|
widget: |
|
- source_sentence: A plane in the sky. |
|
sentences: |
|
- Two airplanes in the sky. |
|
- Two women are sitting in a cafe. |
|
- Turkey's PM Warns Against Protests |
|
- source_sentence: A man jumping rope |
|
sentences: |
|
- A man climbs a rope. |
|
- Blast on Indian train kills one |
|
- Israel expands subsidies to settlements |
|
- source_sentence: A baby is laughing. |
|
sentences: |
|
- The baby laughed in his car seat. |
|
- The girl is playing the guitar. |
|
- Bangladesh Islamist leader executed |
|
- source_sentence: A plane is landing. |
|
sentences: |
|
- A animated airplane is landing. |
|
- A man plays an acoustic guitar. |
|
- Obama urges no new sanctions on Iran |
|
- source_sentence: A boy is vacuuming. |
|
sentences: |
|
- A little boy is vacuuming the floor. |
|
- Suicide bomber strikes in Syria |
|
- 32 die in Bangladesh protest |
|
pipeline_tag: sentence-similarity |
|
model-index: |
|
- name: SentenceTransformer based on distilbert/distilbert-base-uncased |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev 768 |
|
type: sts-dev-768 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8580007118837358 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.871820299536176 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8579597824452743 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8611676230134329 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8584693242993966 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8617539394714434 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.6259192943899555 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.6245849846631494 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8584693242993966 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.871820299536176 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev 512 |
|
type: sts-dev-512 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.855328467168775 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8708546925464771 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8571701704416792 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8609603329646862 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8577665956034857 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8611867637483455 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.6301839390729895 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.6312551259723912 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8577665956034857 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8708546925464771 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev 256 |
|
type: sts-dev-256 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8534192140857989 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8684742287834586 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8550376893582918 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8595873940460774 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.855243500036296 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8595389790366662 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.5692600956239565 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.5631798664802073 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.855243500036296 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8684742287834586 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev 128 |
|
type: sts-dev-128 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8437376978373121 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8634082420330794 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8454596574177755 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.85188111210432 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8479887421152008 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8537259447832961 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.5513203019384504 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.5500687993669725 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8479887421152008 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8634082420330794 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev 64 |
|
type: sts-dev-64 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8272184719216283 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8541030591238341 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8307462071466211 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8406982840852595 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8342382781891662 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8427338906559259 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.494520518114596 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.49218360841938574 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8342382781891662 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8541030591238341 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev 32 |
|
type: sts-dev-32 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.795037446434113 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8337679875014413 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8120635303724889 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8249212312847407 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8157607542813738 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8262833782950811 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.44442829473227297 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.4333209339301445 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8157607542813738 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8337679875014413 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev 16 |
|
type: sts-dev-16 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.7402920507586056 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.7953398971914366 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.7661819958789702 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.7806209887724272 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.7753319460863385 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.788448392758016 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.2914268467178465 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.2731801701260987 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.7753319460863385 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.7953398971914366 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 768 |
|
type: sts-test-768 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8355126555886146 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8474343771835785 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8477769261693708 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8440487632905719 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8482353907773731 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8443357402859023 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.575155372226532 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.5645826036063977 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8482353907773731 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8474343771835785 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 512 |
|
type: sts-test-512 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8345636179092932 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.847969741682177 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8471375569231226 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8432315278152519 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8475673449165414 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8438566473590643 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.5890647647307824 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.579599198660516 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8475673449165414 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.847969741682177 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 256 |
|
type: sts-test-256 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8264268046184008 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8414784020776254 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8414377075419083 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8388634084489552 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8423455168447094 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8400797815114284 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.5229860109488433 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.5099269577284724 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8423455168447094 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8414784020776254 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 128 |
|
type: sts-test-128 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8189773000477083 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.837625236881656 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8349887918183595 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8336489133404312 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8365085956274743 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8347627903646608 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.49799738412782535 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.48970409354637134 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8365085956274743 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.837625236881656 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 64 |
|
type: sts-test-64 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8062259318483077 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8292433269349447 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8236527010227455 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8243846152203906 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8273451113428331 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8269777736926925 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.4318247709105578 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.4325030690630689 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8273451113428331 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8292433269349447 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 32 |
|
type: sts-test-32 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.7769698706658718 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.813231133965274 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8040659399939705 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8083901845044422 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8089540323890078 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8126434700070444 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.3721968691924307 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.36359211044547146 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8089540323890078 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.813231133965274 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 16 |
|
type: sts-test-16 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.7350580362911046 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.7811480253828886 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.7686995805327835 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.7767016091591996 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.7732639293607727 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.7798783495241994 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.25479413300114095 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.24117846955339683 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.7732639293607727 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.7811480253828886 |
|
name: Spearman Max |
|
--- |
|
|
|
# SentenceTransformer based on distilbert/distilbert-base-uncased |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) <!-- at revision 12040accade4e8a0f71eabdb258fecc2e7e948be --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
- **Training Dataset:** |
|
- [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) |
|
- **Language:** en |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("mrm8488/distilbert-base-matryoshka-sts-v2") |
|
# Run inference |
|
sentences = [ |
|
'A boy is vacuuming.', |
|
'A little boy is vacuuming the floor.', |
|
'Suicide bomber strikes in Syria', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-dev-768` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.858 | |
|
| **spearman_cosine** | **0.8718** | |
|
| pearson_manhattan | 0.858 | |
|
| spearman_manhattan | 0.8612 | |
|
| pearson_euclidean | 0.8585 | |
|
| spearman_euclidean | 0.8618 | |
|
| pearson_dot | 0.6259 | |
|
| spearman_dot | 0.6246 | |
|
| pearson_max | 0.8585 | |
|
| spearman_max | 0.8718 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-dev-512` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8553 | |
|
| **spearman_cosine** | **0.8709** | |
|
| pearson_manhattan | 0.8572 | |
|
| spearman_manhattan | 0.861 | |
|
| pearson_euclidean | 0.8578 | |
|
| spearman_euclidean | 0.8612 | |
|
| pearson_dot | 0.6302 | |
|
| spearman_dot | 0.6313 | |
|
| pearson_max | 0.8578 | |
|
| spearman_max | 0.8709 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-dev-256` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8534 | |
|
| **spearman_cosine** | **0.8685** | |
|
| pearson_manhattan | 0.855 | |
|
| spearman_manhattan | 0.8596 | |
|
| pearson_euclidean | 0.8552 | |
|
| spearman_euclidean | 0.8595 | |
|
| pearson_dot | 0.5693 | |
|
| spearman_dot | 0.5632 | |
|
| pearson_max | 0.8552 | |
|
| spearman_max | 0.8685 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-dev-128` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8437 | |
|
| **spearman_cosine** | **0.8634** | |
|
| pearson_manhattan | 0.8455 | |
|
| spearman_manhattan | 0.8519 | |
|
| pearson_euclidean | 0.848 | |
|
| spearman_euclidean | 0.8537 | |
|
| pearson_dot | 0.5513 | |
|
| spearman_dot | 0.5501 | |
|
| pearson_max | 0.848 | |
|
| spearman_max | 0.8634 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-dev-64` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8272 | |
|
| **spearman_cosine** | **0.8541** | |
|
| pearson_manhattan | 0.8307 | |
|
| spearman_manhattan | 0.8407 | |
|
| pearson_euclidean | 0.8342 | |
|
| spearman_euclidean | 0.8427 | |
|
| pearson_dot | 0.4945 | |
|
| spearman_dot | 0.4922 | |
|
| pearson_max | 0.8342 | |
|
| spearman_max | 0.8541 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-dev-32` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.795 | |
|
| **spearman_cosine** | **0.8338** | |
|
| pearson_manhattan | 0.8121 | |
|
| spearman_manhattan | 0.8249 | |
|
| pearson_euclidean | 0.8158 | |
|
| spearman_euclidean | 0.8263 | |
|
| pearson_dot | 0.4444 | |
|
| spearman_dot | 0.4333 | |
|
| pearson_max | 0.8158 | |
|
| spearman_max | 0.8338 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-dev-16` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.7403 | |
|
| **spearman_cosine** | **0.7953** | |
|
| pearson_manhattan | 0.7662 | |
|
| spearman_manhattan | 0.7806 | |
|
| pearson_euclidean | 0.7753 | |
|
| spearman_euclidean | 0.7884 | |
|
| pearson_dot | 0.2914 | |
|
| spearman_dot | 0.2732 | |
|
| pearson_max | 0.7753 | |
|
| spearman_max | 0.7953 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-768` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8355 | |
|
| **spearman_cosine** | **0.8474** | |
|
| pearson_manhattan | 0.8478 | |
|
| spearman_manhattan | 0.844 | |
|
| pearson_euclidean | 0.8482 | |
|
| spearman_euclidean | 0.8443 | |
|
| pearson_dot | 0.5752 | |
|
| spearman_dot | 0.5646 | |
|
| pearson_max | 0.8482 | |
|
| spearman_max | 0.8474 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-512` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:----------| |
|
| pearson_cosine | 0.8346 | |
|
| **spearman_cosine** | **0.848** | |
|
| pearson_manhattan | 0.8471 | |
|
| spearman_manhattan | 0.8432 | |
|
| pearson_euclidean | 0.8476 | |
|
| spearman_euclidean | 0.8439 | |
|
| pearson_dot | 0.5891 | |
|
| spearman_dot | 0.5796 | |
|
| pearson_max | 0.8476 | |
|
| spearman_max | 0.848 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-256` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8264 | |
|
| **spearman_cosine** | **0.8415** | |
|
| pearson_manhattan | 0.8414 | |
|
| spearman_manhattan | 0.8389 | |
|
| pearson_euclidean | 0.8423 | |
|
| spearman_euclidean | 0.8401 | |
|
| pearson_dot | 0.523 | |
|
| spearman_dot | 0.5099 | |
|
| pearson_max | 0.8423 | |
|
| spearman_max | 0.8415 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-128` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.819 | |
|
| **spearman_cosine** | **0.8376** | |
|
| pearson_manhattan | 0.835 | |
|
| spearman_manhattan | 0.8336 | |
|
| pearson_euclidean | 0.8365 | |
|
| spearman_euclidean | 0.8348 | |
|
| pearson_dot | 0.498 | |
|
| spearman_dot | 0.4897 | |
|
| pearson_max | 0.8365 | |
|
| spearman_max | 0.8376 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-64` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8062 | |
|
| **spearman_cosine** | **0.8292** | |
|
| pearson_manhattan | 0.8237 | |
|
| spearman_manhattan | 0.8244 | |
|
| pearson_euclidean | 0.8273 | |
|
| spearman_euclidean | 0.827 | |
|
| pearson_dot | 0.4318 | |
|
| spearman_dot | 0.4325 | |
|
| pearson_max | 0.8273 | |
|
| spearman_max | 0.8292 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-32` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.777 | |
|
| **spearman_cosine** | **0.8132** | |
|
| pearson_manhattan | 0.8041 | |
|
| spearman_manhattan | 0.8084 | |
|
| pearson_euclidean | 0.809 | |
|
| spearman_euclidean | 0.8126 | |
|
| pearson_dot | 0.3722 | |
|
| spearman_dot | 0.3636 | |
|
| pearson_max | 0.809 | |
|
| spearman_max | 0.8132 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-16` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.7351 | |
|
| **spearman_cosine** | **0.7811** | |
|
| pearson_manhattan | 0.7687 | |
|
| spearman_manhattan | 0.7767 | |
|
| pearson_euclidean | 0.7733 | |
|
| spearman_euclidean | 0.7799 | |
|
| pearson_dot | 0.2548 | |
|
| spearman_dot | 0.2412 | |
|
| pearson_max | 0.7733 | |
|
| spearman_max | 0.7811 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### sentence-transformers/stsb |
|
|
|
* Dataset: [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308) |
|
* Size: 5,749 training samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | score | |
|
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 6 tokens</li><li>mean: 10.0 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 9.95 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | score | |
|
|:-----------------------------------------------------------|:----------------------------------------------------------------------|:------------------| |
|
| <code>A plane is taking off.</code> | <code>An air plane is taking off.</code> | <code>1.0</code> | |
|
| <code>A man is playing a large flute.</code> | <code>A man is playing a flute.</code> | <code>0.76</code> | |
|
| <code>A man is spreading shreded cheese on a pizza.</code> | <code>A man is spreading shredded cheese on an uncooked pizza.</code> | <code>0.76</code> | |
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "CoSENTLoss", |
|
"matryoshka_dims": [ |
|
768, |
|
512, |
|
256, |
|
128, |
|
64, |
|
32, |
|
16 |
|
], |
|
"matryoshka_weights": [ |
|
1, |
|
1, |
|
1, |
|
1, |
|
1, |
|
1, |
|
1 |
|
], |
|
"n_dims_per_step": -1 |
|
} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### sentence-transformers/stsb |
|
|
|
* Dataset: [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308) |
|
* Size: 1,500 evaluation samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | score | |
|
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 5 tokens</li><li>mean: 15.1 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.11 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.47</li><li>max: 1.0</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | score | |
|
|:--------------------------------------------------|:------------------------------------------------------|:------------------| |
|
| <code>A man with a hard hat is dancing.</code> | <code>A man wearing a hard hat is dancing.</code> | <code>1.0</code> | |
|
| <code>A young child is riding a horse.</code> | <code>A child is riding a horse.</code> | <code>0.95</code> | |
|
| <code>A man is feeding a mouse to a snake.</code> | <code>The man is feeding a mouse to the snake.</code> | <code>1.0</code> | |
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "CoSENTLoss", |
|
"matryoshka_dims": [ |
|
768, |
|
512, |
|
256, |
|
128, |
|
64, |
|
32, |
|
16 |
|
], |
|
"matryoshka_weights": [ |
|
1, |
|
1, |
|
1, |
|
1, |
|
1, |
|
1, |
|
1 |
|
], |
|
"n_dims_per_step": -1 |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 128 |
|
- `per_device_eval_batch_size`: 128 |
|
- `num_train_epochs`: 4 |
|
- `warmup_ratio`: 0.1 |
|
- `bf16`: True |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 128 |
|
- `per_device_eval_batch_size`: 128 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 4 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: True |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | loss | sts-dev-128_spearman_cosine | sts-dev-16_spearman_cosine | sts-dev-256_spearman_cosine | sts-dev-32_spearman_cosine | sts-dev-512_spearman_cosine | sts-dev-64_spearman_cosine | sts-dev-768_spearman_cosine | sts-test-128_spearman_cosine | sts-test-16_spearman_cosine | sts-test-256_spearman_cosine | sts-test-32_spearman_cosine | sts-test-512_spearman_cosine | sts-test-64_spearman_cosine | sts-test-768_spearman_cosine | |
|
|:------:|:----:|:-------------:|:-------:|:---------------------------:|:--------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:----------------------------:|:---------------------------:|:----------------------------:|:---------------------------:|:----------------------------:|:---------------------------:|:----------------------------:| |
|
| 2.2222 | 100 | 60.4066 | 60.8718 | 0.8634 | 0.7953 | 0.8685 | 0.8338 | 0.8709 | 0.8541 | 0.8718 | - | - | - | - | - | - | - | |
|
| 4.0 | 180 | - | - | - | - | - | - | - | - | - | 0.8376 | 0.7811 | 0.8415 | 0.8132 | 0.8480 | 0.8292 | 0.8474 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.0.0 |
|
- Transformers: 4.41.1 |
|
- PyTorch: 2.3.0+cu121 |
|
- Accelerate: 0.30.1 |
|
- Datasets: 2.19.1 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MatryoshkaLoss |
|
```bibtex |
|
@misc{kusupati2024matryoshka, |
|
title={Matryoshka Representation Learning}, |
|
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, |
|
year={2024}, |
|
eprint={2205.13147}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG} |
|
} |
|
``` |
|
|
|
#### CoSENTLoss |
|
```bibtex |
|
@online{kexuefm-8847, |
|
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT}, |
|
author={Su Jianlin}, |
|
year={2022}, |
|
month={Jan}, |
|
url={https://kexue.fm/archives/8847}, |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |