mrp/SCT_BERT_Base
This is a SCT model: It maps sentences to a dense vector space and can be used for tasks like semantic search.
Usage
Using this model becomes easy when you have SCT installed:
pip install -U git+https://github.com/mrpeerat/SCT
Then you can use the model like this:
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('mrp/SCT_BERT_Base')
embeddings = model.encode(sentences)
print(embeddings)
Evaluation Results
For an automated evaluation of this model, see the Sentence Embeddings Benchmark: Semantic Textual Similarity
Citing & Authors
@article{limkonchotiwat-etal-2023-sct,
title = "An Efficient Self-Supervised Cross-View Training For Sentence Embedding",
author = "Limkonchotiwat, Peerat and
Ponwitayarat, Wuttikorn and
Lowphansirikul, Lalita and
Udomcharoenchaikit, Can and
Chuangsuwanich, Ekapol and
Nutanong, Sarana",
journal = "Transactions of the Association for Computational Linguistics",
year = "2023",
address = "Cambridge, MA",
publisher = "MIT Press",
}
- Downloads last month
- 8
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Datasets used to train mrp/SCT_BERT_Base
Evaluation results
- Test spearmanr on STS12self-reported78.830
- Test spearmanr on STS13self-reported78.020