ms57rd's picture
Update README.md
00da2d4 verified
|
raw
history blame
1.36 kB
metadata
license: mit

EEG Forecasting with Llama 3.1-8B and Time-LLM

This repository contains the code and model for forecasting EEG signals by combining the quantized Llama 3.1-8B model from Hugging Face and a modified version of the Time-LLM framework.

Overview

This project aims to leverage large language models (LLMs) for time-series forecasting, specifically focusing on EEG data. The integration of Llama 3.1-8B allows us to apply powerful sequence modeling capabilities to predict future EEG signal patterns with high accuracy and efficiency.

Key Features

  • Quantized Llama 3.1-8B Model: Utilizes a quantized version of Llama 3.1-8B to reduce computational requirements while maintaining performance.
  • Modified Time-LLM Framework: Adapted the Time-LLM framework for EEG signal forecasting, allowing for efficient processing of EEG time-series data.
  • Scalable and Flexible: The model can be easily adapted to other time-series forecasting tasks beyond EEG data.

Getting Started

Prerequisites

Before you begin, ensure you have the following installed:

  • Python 3.8+
  • PyTorch
  • Transformers (Hugging Face)
  • Time-LLM dependencies (see the original Time-LLM repository)