|
--- |
|
license: apache-2.0 |
|
language: de |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- wikiann |
|
model-index: |
|
- name: ner-bert-german |
|
results: [] |
|
examples: null |
|
widget: |
|
- text: "Herr Schmidt lebt in Berlin und arbeitet für die UN." |
|
example_title: Schmidt aus Berlin |
|
- text: "Die Deutsche Bahn hat ihren Hauptsitz in Frankfurt." |
|
example_title: Deutsche Bahn |
|
- text: "In München gibt es viele Unternehmen, z.B. BMW und Siemens." |
|
example_title: München |
|
metrics: |
|
- seqeval |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ner-bert-german |
|
|
|
This model can be used to do [named-entity recognition](https://en.wikipedia.org/wiki/Named-entity_recognition) in German. |
|
It is trained on a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the German wikiann dataset. |
|
|
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2450 |
|
- Overall Precision: 0.8767 |
|
- Overall Recall: 0.8893 |
|
- Overall F1: 0.8829 |
|
- Overall Accuracy: 0.9606 |
|
- Loc F1: 0.9067 |
|
- Org F1: 0.8278 |
|
- Per F1: 0.9152 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 7 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | Loc F1 | Org F1 | Per F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:----------------:|:------:|:------:|:------:| |
|
| 0.252 | 0.8 | 1000 | 0.1724 | 0.8422 | 0.8368 | 0.8395 | 0.9501 | 0.8702 | 0.7593 | 0.8921 | |
|
| 0.1376 | 1.6 | 2000 | 0.1679 | 0.8388 | 0.8607 | 0.8497 | 0.9528 | 0.8814 | 0.7712 | 0.8971 | |
|
| 0.0982 | 2.4 | 3000 | 0.1880 | 0.8631 | 0.8598 | 0.8614 | 0.9564 | 0.8847 | 0.7915 | 0.9070 | |
|
| 0.0681 | 3.2 | 4000 | 0.1956 | 0.8599 | 0.8775 | 0.8686 | 0.9574 | 0.8905 | 0.8084 | 0.9097 | |
|
| 0.0477 | 4.0 | 5000 | 0.2115 | 0.8738 | 0.8814 | 0.8776 | 0.9593 | 0.9003 | 0.8207 | 0.9144 | |
|
| 0.031 | 4.8 | 6000 | 0.2274 | 0.8751 | 0.8826 | 0.8788 | 0.9598 | 0.9017 | 0.8246 | 0.9115 | |
|
| 0.0229 | 5.6 | 7000 | 0.2317 | 0.8715 | 0.8888 | 0.8801 | 0.9598 | 0.9061 | 0.8208 | 0.9145 | |
|
| 0.0181 | 6.4 | 8000 | 0.2450 | 0.8767 | 0.8893 | 0.8829 | 0.9606 | 0.9067 | 0.8278 | 0.9152 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.25.1 |
|
- Pytorch 1.13.1 |
|
- Datasets 2.8.0 |
|
- Tokenizers 0.13.2 |