metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:579077
- loss:MultipleNegativesRankingLoss
- loss:CosineSimilarityLoss
base_model: Alibaba-NLP/gte-multilingual-base
widget:
- source_sentence: >-
공공부문 채용의 경우 안전·건강 등 국민생활과 밀접한 서비스 중심으로 국가공무원을 1만 6000명 증원하고, 공공기관 필수인력 확충을
추진한다.
sentences:
- >-
공공부문 채용의 경우 안전보건 등 국민생활과 밀접한 서비스를 중심으로 국가공무원을 1만6000명 늘리고 공공기관 필수인력 확충을
추진하기로 했습니다.
- 백열등보단 간접 조명을 켜두고 독서를 하는게 좋을 것 같아
- >-
이번에 공개한 기관별 정규직 전환 실적은 ‘공공부문 비정규직 고용개선 시스템’(http://public.moel.go.kr)에서
확인할 수 있다.
- source_sentence: 런던 여행을 하려는 분들에게 추천하고 싶은 곳 입니다.
sentences:
- 만약 내가 파리에 다시 온다면, 나는 여기에 머무를 것입니다.
- 지금의 위기를 새로운 기회와 발전의 원동력으로 삼겠습니다.
- 런던을 여행하고 싶은 분들에게 추천해 드리고 싶은 곳이에요.
- source_sentence: 이 절에서는 지불 과정에서 내부 통제의 중요성을 강조한다.
sentences:
- 그들은 스스로 세금을 부과함으로써 고속도로를 건설하고 새로운 버스 노선을 만들 것인가?
- >-
이 섹션에서는 전통적인 지불 프로세스, 전통적인 지불 프로세스 수정 및 지불 프로세스를 효과적으로 관리하기 위한 내부 제어의
중요성에 대해 논의합니다.
- 이 절은 전통적인 지불 절차에 대한 조정을 다루지 않을 것이다.
- source_sentence: 스케이트보드를 타고 건물 계단을 내려가는 스케이트보드 타는 사람.
sentences:
- 그는 긴장이나 피로의 한계에 도달한 후 해시 물체를 얻기 시작했다.
- 스케이트보더가 목을 부러뜨린다
- 스케이트보드 타는 사람이 건물 계단을 타고 내려간다
- source_sentence: 1896년, 경제 및 행정 조직이 조정되었다.
sentences:
- 세 명의 여자가 밖에 있다.
- 1896년에 아무 관심도 없었다.
- >-
말레이 주 Selangor, Perak, Negeri Sembilan 및 Pahang의 연맹은 1896년에 경제 및 행정 조직을
조정하기 위해 선포되었습니다.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: SentenceTransformer based on Alibaba-NLP/gte-multilingual-base
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev
type: sts-dev
metrics:
- type: pearson_cosine
value: 0.9347680624097541
name: Pearson Cosine
- type: spearman_cosine
value: 0.8993438650317843
name: Spearman Cosine
SentenceTransformer based on Alibaba-NLP/gte-multilingual-base
This is a sentence-transformers model finetuned from Alibaba-NLP/gte-multilingual-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Alibaba-NLP/gte-multilingual-base
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'1896년, 경제 및 행정 조직이 조정되었다.',
'말레이 주 Selangor, Perak, Negeri Sembilan 및 Pahang의 연맹은 1896년에 경제 및 행정 조직을 조정하기 위해 선포되었습니다.',
'1896년에 아무 관심도 없었다.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-dev
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.9348 |
spearman_cosine | 0.8993 |
Training Details
Training Datasets
Unnamed Dataset
- Size: 568,576 training samples
- Columns:
sentence_0
,sentence_1
, andsentence_2
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 sentence_2 type string string string details - min: 5 tokens
- mean: 20.03 tokens
- max: 122 tokens
- min: 5 tokens
- mean: 19.48 tokens
- max: 88 tokens
- min: 5 tokens
- mean: 14.72 tokens
- max: 47 tokens
- Samples:
sentence_0 sentence_1 sentence_2 사람들이 자동차를 좋아한다.
사람들은 클래식 자동차를 존경한다.
사람들이 줄을 서서 콘서트를 기다리고 있다.
그가 말을 타고 가면서 피의 강물이 흐르고 남자는 안장에 털썩 주저앉았다.
그 남자는 말을 타다가 피를 흘리고 있었다.
남자는 안장에 똑바로 앉았다.
그 자료는 일년 중 일부만을 다루었다.
올해 3월 보고된 2001년 자료는 예비 자료로 간주해야 하지만(반년만 다뤄지고 새로운 데이터 시스템에 기대되는 통상적인 종류의 스타트업 문제를 반영했다), 이미 공사가 그 어느 때보다 전국적으로 가능한 법률 서비스 관행에 대한 완전한 그림을 제공할 수 있는 풍부한 정보를 만들어냈다.
그 자료는 일년 중 일부만을 다루었을 뿐 전혀 도움이 되지 않았다.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Unnamed Dataset
- Size: 10,501 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 7 tokens
- mean: 20.82 tokens
- max: 73 tokens
- min: 8 tokens
- mean: 19.95 tokens
- max: 63 tokens
- min: 0.0
- mean: 0.44
- max: 1.0
- Samples:
sentence_0 sentence_1 label 제 학교 성적표를 받기로한 메일을 알 수 있을까요?
쿠팡은 여태까지 배송 주문 확인 메일을 몇 통 보냈어?
0.04
지냈던 숙소 중에서 제일 마음에 들었습니다.
지금 까지 이용한 에어비앤비 중에서 제일 마음에 들었어요.
0.6
눈 내릴 때 운전은 안됩니다.
눈 내릴 때 운전은 위험해서 안돼.
0.74
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 32per_device_eval_batch_size
: 32batch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss | sts-dev_spearman_cosine |
---|---|---|---|
0.7599 | 500 | 0.324 | - |
1.0015 | 659 | - | 0.8993 |
Framework Versions
- Python: 3.11.10
- Sentence Transformers: 3.3.0
- Transformers: 4.46.2
- PyTorch: 2.4.0+cu121
- Accelerate: 1.1.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}