mtgv
/

Image Classification

VisionLLaMA-Base-MAE

With the Masked Autoencoders' paradigm, VisionLLaMA-Base-MAE model is trained on ImageNet-1k without labels. It manifests substantial improvements over classification tasks (SFT, linear probing) on ImageNet-1K and the segmentation task on ADE20K.

Model ImageNet Acc (SFT) ImageNet Acc (Linear Probe) ADE20K Segmentation
VisionLLaMA-Base-MAE (ep800) 84.0 69.7 49.0
VisionLLaMA-Base-MAE (ep1600) 84.3 71.7 50.2

How to Use

Please refer the Github page for usage.

Citation

@article{chu2024visionllama,
  title={VisionLLaMA: A Unified LLaMA Interface for Vision Tasks},
  author={Chu, Xiangxiang and Su, Jianlin and Zhang, Bo and Shen, Chunhua},
  journal={arXiv preprint arXiv:2403.00522},
  year={2024}
}
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
Unable to determine this model's library. Check the docs .

Dataset used to train mtgv/VisionLLaMA-Base-MAE