lge_tests_prelim

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2067
  • Accuracy: 0.75

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0 0 2.6254 0.0
2.6109 0.0064 100 2.6078 0.0
2.5713 0.0128 200 2.5687 0.0
2.5492 0.0192 300 2.5395 0.0
2.5191 0.0256 400 2.5052 0.0
2.4652 0.0320 500 2.4670 0.0
2.435 0.0384 600 2.4292 0.0
2.4039 0.0448 700 2.3940 0.0
2.3781 0.0512 800 2.3642 0.0
2.35 0.0576 900 2.3376 0.0
2.3129 0.0640 1000 2.3098 0.0
2.2849 0.0704 1100 2.2799 0.0
2.2505 0.0768 1200 2.2264 0.0
2.2202 0.0832 1300 2.1897 0.0
2.1454 0.0896 1400 2.1558 0.0
2.1293 0.0960 1500 2.1155 0.0
2.0727 0.1024 1600 2.0485 0.0
2.0048 0.1088 1700 1.9935 0.0
2.0274 0.1152 1800 1.9687 0.0
1.953 0.1216 1900 1.9447 0.0
1.8883 0.1280 2000 1.8772 0.0
1.8263 0.1344 2100 1.8623 0.0
1.7997 0.1408 2200 1.8072 0.005
1.7646 0.1472 2300 1.7725 0.0
1.7121 0.1536 2400 1.7096 0.0
1.6922 0.1600 2500 1.6917 0.015
1.6736 0.1664 2600 1.6496 0.0
1.6291 0.1728 2700 1.6183 0.035
1.5893 0.1792 2800 1.5810 0.005
1.5395 0.1856 2900 1.5429 0.035
1.5109 0.1920 3000 1.5153 0.075
1.4911 0.1984 3100 1.4899 0.07
1.4687 0.2048 3200 1.4783 0.065
1.4461 0.2112 3300 1.4396 0.075
1.3921 0.2176 3400 1.4007 0.075
1.3629 0.2240 3500 1.3684 0.1
1.3245 0.2304 3600 1.3432 0.075
1.3085 0.2368 3700 1.3058 0.195
1.3496 0.2432 3800 1.2990 0.055
1.2774 0.2496 3900 1.2640 0.095
1.2665 0.2560 4000 1.2677 0.06
1.1992 0.2625 4100 1.2062 0.215
1.2042 0.2689 4200 1.1900 0.21
1.1635 0.2753 4300 1.1518 0.26
1.1682 0.2817 4400 1.1399 0.18
1.1194 0.2881 4500 1.1299 0.225
1.1014 0.2945 4600 1.0991 0.225
1.0721 0.3009 4700 1.0832 0.215
1.052 0.3073 4800 1.0435 0.325
1.0626 0.3137 4900 1.0431 0.285
1.0336 0.3201 5000 1.0169 0.275
1.0364 0.3265 5100 1.0671 0.075
0.9757 0.3329 5200 0.9752 0.375
0.9877 0.3393 5300 0.9627 0.325
0.9792 0.3457 5400 0.9401 0.345
0.9266 0.3521 5500 0.9213 0.365
0.9113 0.3585 5600 0.8966 0.415
0.8876 0.3649 5700 0.8923 0.275
0.8558 0.3713 5800 0.8789 0.28
0.8659 0.3777 5900 0.8660 0.3
0.8328 0.3841 6000 0.8422 0.375
0.8317 0.3905 6100 0.8459 0.28
0.8277 0.3969 6200 0.8762 0.155
0.7851 0.4033 6300 0.7940 0.4
0.7875 0.4097 6400 0.7926 0.36
0.8502 0.4161 6500 0.7876 0.375
0.7762 0.4225 6600 0.8018 0.295
0.8015 0.4289 6700 0.7519 0.365
0.7489 0.4353 6800 0.7534 0.36
0.7517 0.4417 6900 0.7896 0.2
0.7989 0.4481 7000 0.7280 0.36
0.6945 0.4545 7100 0.7047 0.37
0.6574 0.4609 7200 0.6533 0.54
0.7302 0.4673 7300 0.7296 0.26
0.688 0.4737 7400 0.6556 0.395
0.6391 0.4801 7500 0.6475 0.415
0.6368 0.4865 7600 0.6306 0.355
0.6125 0.4929 7700 0.6164 0.395
0.5952 0.4993 7800 0.6018 0.42
0.5939 0.5057 7900 0.6027 0.365
0.5922 0.5121 8000 0.5569 0.545
0.5471 0.5185 8100 0.5585 0.38
0.5395 0.5249 8200 0.5676 0.42
0.5494 0.5313 8300 0.5726 0.345
0.5166 0.5377 8400 0.5164 0.49
0.5454 0.5441 8500 0.5302 0.455
0.5121 0.5505 8600 0.4883 0.54
0.5356 0.5569 8700 0.4843 0.515
0.4726 0.5633 8800 0.4832 0.465
0.472 0.5697 8900 0.5029 0.45
0.4606 0.5761 9000 0.4561 0.55
0.4735 0.5825 9100 0.4549 0.52
0.4721 0.5889 9200 0.4391 0.55
0.4607 0.5953 9300 0.4354 0.495
0.4426 0.6017 9400 0.4215 0.57
0.4074 0.6081 9500 0.4147 0.55
0.3937 0.6145 9600 0.3986 0.575
0.4057 0.6209 9700 0.3876 0.605
0.4043 0.6273 9800 0.3881 0.565
0.3691 0.6337 9900 0.3787 0.59
0.3728 0.6401 10000 0.3860 0.5
0.3425 0.6465 10100 0.3778 0.52
0.4213 0.6529 10200 0.4044 0.47
0.3457 0.6593 10300 0.3736 0.535
0.3617 0.6657 10400 0.3520 0.545
0.3519 0.6721 10500 0.3561 0.57
0.3314 0.6785 10600 0.3393 0.6
0.3375 0.6849 10700 0.3368 0.61
0.3132 0.6913 10800 0.3140 0.67
0.2988 0.6977 10900 0.3258 0.56
0.3196 0.7041 11000 0.3215 0.555
0.3012 0.7105 11100 0.2978 0.625
0.2984 0.7169 11200 0.3184 0.53
0.2854 0.7233 11300 0.2925 0.625
0.3007 0.7297 11400 0.3168 0.53
0.2954 0.7361 11500 0.2840 0.675
0.2899 0.7425 11600 0.2734 0.72
0.3006 0.7489 11700 0.2771 0.62
0.2949 0.7553 11800 0.2746 0.68
0.2557 0.7617 11900 0.2814 0.665
0.2523 0.7681 12000 0.2641 0.685
0.3054 0.7745 12100 0.2987 0.53
0.2678 0.7809 12200 0.2528 0.7
0.2506 0.7874 12300 0.2647 0.6
0.2438 0.7938 12400 0.2464 0.695
0.2442 0.8002 12500 0.2424 0.725
0.2717 0.8066 12600 0.2565 0.66
0.2423 0.8130 12700 0.2455 0.68
0.2391 0.8194 12800 0.2422 0.68
0.2348 0.8258 12900 0.2366 0.7
0.2267 0.8322 13000 0.2376 0.69
0.2277 0.8386 13100 0.2295 0.71
0.2094 0.8450 13200 0.2281 0.71
0.2433 0.8514 13300 0.2349 0.705
0.2364 0.8578 13400 0.2224 0.74
0.2148 0.8642 13500 0.2257 0.695
0.2102 0.8706 13600 0.2260 0.695
0.2252 0.8770 13700 0.2234 0.71
0.2031 0.8834 13800 0.2185 0.725
0.2133 0.8898 13900 0.2198 0.74
0.2204 0.8962 14000 0.2129 0.745
0.2215 0.9026 14100 0.2151 0.755
0.1938 0.9090 14200 0.2142 0.73
0.2088 0.9154 14300 0.2135 0.73
0.202 0.9218 14400 0.2138 0.71
0.202 0.9282 14500 0.2096 0.75
0.2003 0.9346 14600 0.2104 0.745
0.1985 0.9410 14700 0.2106 0.725
0.2097 0.9474 14800 0.2071 0.745
0.2058 0.9538 14900 0.2070 0.775
0.2163 0.9602 15000 0.2080 0.755
0.2123 0.9666 15100 0.2067 0.755
0.2151 0.9730 15200 0.2082 0.74
0.1888 0.9794 15300 0.2069 0.75
0.2026 0.9858 15400 0.2069 0.75
0.1918 0.9922 15500 0.2065 0.75
0.1987 0.9986 15600 0.2067 0.75

Framework versions

  • Transformers 4.46.0
  • Pytorch 2.5.1
  • Datasets 3.1.0
  • Tokenizers 0.20.1
Downloads last month
22
Safetensors
Model size
7.04k params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.