File size: 3,358 Bytes
c5a3d64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0994862
 
c5a3d64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78572cf
c5a3d64
 
 
 
 
 
 
 
 
 
 
 
0994862
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5a3d64
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
---
library_name: transformers
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: lge_tests_prelim
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# lge_tests_prelim

This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4324
- Accuracy: 0.64

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| No log        | 0      | 0    | 2.6277          | 0.0      |
| 2.487         | 0.0320 | 100  | 2.4830          | 0.0      |
| 2.3341        | 0.0641 | 200  | 2.3221          | 0.0      |
| 2.2138        | 0.0961 | 300  | 2.2363          | 0.0      |
| 2.0317        | 0.1281 | 400  | 2.0567          | 0.0      |
| 1.8181        | 0.1602 | 500  | 1.7764          | 0.005    |
| 1.5427        | 0.1922 | 600  | 1.5209          | 0.015    |
| 1.3683        | 0.2242 | 700  | 1.3421          | 0.015    |
| 1.1867        | 0.2562 | 800  | 1.1883          | 0.045    |
| 1.1158        | 0.2883 | 900  | 1.1456          | 0.035    |
| 1.1237        | 0.3203 | 1000 | 1.0221          | 0.04     |
| 0.9856        | 0.3523 | 1100 | 0.9365          | 0.14     |
| 0.8885        | 0.3844 | 1200 | 0.8694          | 0.16     |
| 0.8273        | 0.4164 | 1300 | 0.8421          | 0.115    |
| 0.8084        | 0.4484 | 1400 | 0.8112          | 0.14     |
| 0.7671        | 0.4805 | 1500 | 0.7577          | 0.145    |
| 0.6999        | 0.5125 | 1600 | 0.6785          | 0.33     |
| 0.6531        | 0.5445 | 1700 | 0.6651          | 0.325    |
| 0.6251        | 0.5766 | 1800 | 0.6239          | 0.365    |
| 0.5899        | 0.6086 | 1900 | 0.5955          | 0.375    |
| 0.5622        | 0.6406 | 2000 | 0.5660          | 0.42     |
| 0.5719        | 0.6726 | 2100 | 0.5642          | 0.365    |
| 0.5585        | 0.7047 | 2200 | 0.5228          | 0.495    |
| 0.514         | 0.7367 | 2300 | 0.4972          | 0.575    |
| 0.5052        | 0.7687 | 2400 | 0.4992          | 0.49     |
| 0.4651        | 0.8008 | 2500 | 0.4654          | 0.585    |
| 0.4473        | 0.8328 | 2600 | 0.4556          | 0.65     |
| 0.4548        | 0.8648 | 2700 | 0.4506          | 0.575    |
| 0.4576        | 0.8969 | 2800 | 0.4450          | 0.57     |
| 0.4343        | 0.9289 | 2900 | 0.4344          | 0.67     |
| 0.4262        | 0.9609 | 3000 | 0.4328          | 0.67     |
| 0.4298        | 0.9930 | 3100 | 0.4324          | 0.64     |


### Framework versions

- Transformers 4.46.0
- Pytorch 2.5.1
- Datasets 3.1.0
- Tokenizers 0.20.1