mtzig commited on
Commit
ca673e5
·
verified ·
1 Parent(s): 1543d67

Model save

Browse files
Files changed (3) hide show
  1. README.md +160 -160
  2. model.safetensors +1 -1
  3. training_args.bin +1 -1
README.md CHANGED
@@ -16,8 +16,8 @@ should probably proofread and complete it, then remove this comment. -->
16
 
17
  This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
18
  It achieves the following results on the evaluation set:
19
- - Loss: 0.0033
20
- - Accuracy: 1.0
21
 
22
  ## Model description
23
 
@@ -36,7 +36,7 @@ More information needed
36
  ### Training hyperparameters
37
 
38
  The following hyperparameters were used during training:
39
- - learning_rate: 0.0005
40
  - train_batch_size: 64
41
  - eval_batch_size: 64
42
  - seed: 42
@@ -49,163 +49,163 @@ The following hyperparameters were used during training:
49
 
50
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
51
  |:-------------:|:------:|:-----:|:---------------:|:--------:|
52
- | No log | 0 | 0 | 2.6145 | 0.0 |
53
- | 2.5809 | 0.0064 | 100 | 2.5687 | 0.0 |
54
- | 2.523 | 0.0128 | 200 | 2.5229 | 0.0 |
55
- | 2.4811 | 0.0192 | 300 | 2.4679 | 0.0 |
56
- | 2.4303 | 0.0256 | 400 | 2.4110 | 0.0 |
57
- | 2.3619 | 0.0320 | 500 | 2.3606 | 0.0 |
58
- | 2.3345 | 0.0384 | 600 | 2.3222 | 0.0 |
59
- | 2.3092 | 0.0448 | 700 | 2.2921 | 0.0 |
60
- | 2.2821 | 0.0512 | 800 | 2.2657 | 0.0 |
61
- | 2.2333 | 0.0576 | 900 | 2.2310 | 0.0 |
62
- | 2.177 | 0.0640 | 1000 | 2.1707 | 0.0 |
63
- | 2.1536 | 0.0704 | 1100 | 2.1321 | 0.0 |
64
- | 2.1367 | 0.0768 | 1200 | 2.0913 | 0.0 |
65
- | 2.0166 | 0.0832 | 1300 | 2.0268 | 0.0 |
66
- | 1.9742 | 0.0896 | 1400 | 2.0546 | 0.0 |
67
- | 1.9483 | 0.0960 | 1500 | 1.9994 | 0.0 |
68
- | 1.8687 | 0.1024 | 1600 | 1.8746 | 0.0 |
69
- | 1.8801 | 0.1088 | 1700 | 1.9225 | 0.0 |
70
- | 1.884 | 0.1152 | 1800 | 1.9165 | 0.0 |
71
- | 1.8477 | 0.1216 | 1900 | 1.7852 | 0.0 |
72
- | 1.8183 | 0.1280 | 2000 | 1.7833 | 0.0 |
73
- | 1.8369 | 0.1344 | 2100 | 1.9553 | 0.0 |
74
- | 1.8137 | 0.1408 | 2200 | 1.7512 | 0.0 |
75
- | 1.6711 | 0.1472 | 2300 | 1.7676 | 0.01 |
76
- | 1.663 | 0.1536 | 2400 | 1.7389 | 0.0 |
77
- | 1.7879 | 0.1600 | 2500 | 1.6750 | 0.005 |
78
- | 1.69 | 0.1664 | 2600 | 1.6753 | 0.005 |
79
- | 1.6681 | 0.1728 | 2700 | 1.7350 | 0.0 |
80
- | 1.7412 | 0.1792 | 2800 | 1.6032 | 0.01 |
81
- | 1.5453 | 0.1856 | 2900 | 1.6210 | 0.005 |
82
- | 1.5741 | 0.1920 | 3000 | 1.6635 | 0.0 |
83
- | 1.5371 | 0.1984 | 3100 | 1.6253 | 0.0 |
84
- | 1.6883 | 0.2048 | 3200 | 1.5333 | 0.005 |
85
- | 1.4715 | 0.2112 | 3300 | 1.6502 | 0.005 |
86
- | 1.4137 | 0.2176 | 3400 | 1.4267 | 0.0 |
87
- | 1.4928 | 0.2240 | 3500 | 1.4612 | 0.0 |
88
- | 1.3538 | 0.2304 | 3600 | 1.3609 | 0.015 |
89
- | 1.341 | 0.2368 | 3700 | 1.3231 | 0.015 |
90
- | 1.3125 | 0.2432 | 3800 | 1.3416 | 0.0 |
91
- | 1.6622 | 0.2496 | 3900 | 1.4710 | 0.005 |
92
- | 1.5242 | 0.2560 | 4000 | 1.4332 | 0.005 |
93
- | 1.2997 | 0.2625 | 4100 | 1.3173 | 0.01 |
94
- | 1.2837 | 0.2689 | 4200 | 1.3149 | 0.005 |
95
- | 1.2307 | 0.2753 | 4300 | 1.1461 | 0.015 |
96
- | 1.5046 | 0.2817 | 4400 | 1.3055 | 0.005 |
97
- | 1.2688 | 0.2881 | 4500 | 1.1161 | 0.01 |
98
- | 1.1872 | 0.2945 | 4600 | 1.1132 | 0.01 |
99
- | 1.1344 | 0.3009 | 4700 | 1.0692 | 0.01 |
100
- | 1.2026 | 0.3073 | 4800 | 1.0552 | 0.0 |
101
- | 1.0938 | 0.3137 | 4900 | 1.0710 | 0.02 |
102
- | 1.0049 | 0.3201 | 5000 | 0.9988 | 0.005 |
103
- | 1.1265 | 0.3265 | 5100 | 0.9553 | 0.03 |
104
- | 0.9829 | 0.3329 | 5200 | 0.9911 | 0.01 |
105
- | 0.9873 | 0.3393 | 5300 | 0.9368 | 0.02 |
106
- | 0.9269 | 0.3457 | 5400 | 0.8815 | 0.02 |
107
- | 0.9027 | 0.3521 | 5500 | 0.9123 | 0.01 |
108
- | 0.8419 | 0.3585 | 5600 | 0.9692 | 0.02 |
109
- | 0.9754 | 0.3649 | 5700 | 0.9221 | 0.04 |
110
- | 0.8729 | 0.3713 | 5800 | 0.9506 | 0.045 |
111
- | 0.7891 | 0.3777 | 5900 | 0.7808 | 0.125 |
112
- | 0.7072 | 0.3841 | 6000 | 0.6781 | 0.17 |
113
- | 0.6546 | 0.3905 | 6100 | 0.6591 | 0.18 |
114
- | 0.5607 | 0.3969 | 6200 | 0.5789 | 0.3 |
115
- | 0.5397 | 0.4033 | 6300 | 0.4997 | 0.445 |
116
- | 0.5981 | 0.4097 | 6400 | 0.4789 | 0.475 |
117
- | 0.4037 | 0.4161 | 6500 | 0.5675 | 0.245 |
118
- | 0.4213 | 0.4225 | 6600 | 0.3815 | 0.63 |
119
- | 0.4639 | 0.4289 | 6700 | 0.3542 | 0.59 |
120
- | 0.3786 | 0.4353 | 6800 | 0.3166 | 0.625 |
121
- | 0.5791 | 0.4417 | 6900 | 0.8131 | 0.13 |
122
- | 0.4567 | 0.4481 | 7000 | 0.2814 | 0.65 |
123
- | 0.4709 | 0.4545 | 7100 | 0.6059 | 0.16 |
124
- | 0.2642 | 0.4609 | 7200 | 0.3014 | 0.53 |
125
- | 0.3518 | 0.4673 | 7300 | 0.2250 | 0.66 |
126
- | 0.2309 | 0.4737 | 7400 | 0.1933 | 0.75 |
127
- | 0.2686 | 0.4801 | 7500 | 0.2457 | 0.54 |
128
- | 0.2142 | 0.4865 | 7600 | 0.2393 | 0.625 |
129
- | 0.1771 | 0.4929 | 7700 | 0.2440 | 0.565 |
130
- | 0.1637 | 0.4993 | 7800 | 0.1620 | 0.775 |
131
- | 0.2961 | 0.5057 | 7900 | 0.5910 | 0.12 |
132
- | 0.1414 | 0.5121 | 8000 | 0.1640 | 0.74 |
133
- | 0.1106 | 0.5185 | 8100 | 0.1175 | 0.855 |
134
- | 0.1494 | 0.5249 | 8200 | 0.1550 | 0.725 |
135
- | 0.1337 | 0.5313 | 8300 | 0.1139 | 0.85 |
136
- | 0.1713 | 0.5377 | 8400 | 0.1009 | 0.86 |
137
- | 0.1294 | 0.5441 | 8500 | 0.1391 | 0.755 |
138
- | 0.1582 | 0.5505 | 8600 | 0.0950 | 0.86 |
139
- | 0.0931 | 0.5569 | 8700 | 0.0985 | 0.845 |
140
- | 0.0663 | 0.5633 | 8800 | 0.1735 | 0.635 |
141
- | 0.1151 | 0.5697 | 8900 | 0.1516 | 0.69 |
142
- | 0.1891 | 0.5761 | 9000 | 0.0983 | 0.8 |
143
- | 0.1057 | 0.5825 | 9100 | 0.0902 | 0.85 |
144
- | 0.1255 | 0.5889 | 9200 | 0.0935 | 0.825 |
145
- | 0.1474 | 0.5953 | 9300 | 0.0715 | 0.89 |
146
- | 0.1108 | 0.6017 | 9400 | 0.1197 | 0.78 |
147
- | 0.1694 | 0.6081 | 9500 | 0.2394 | 0.485 |
148
- | 0.0989 | 0.6145 | 9600 | 0.0985 | 0.83 |
149
- | 0.1155 | 0.6209 | 9700 | 0.0745 | 0.88 |
150
- | 0.2256 | 0.6273 | 9800 | 0.1757 | 0.63 |
151
- | 0.1155 | 0.6337 | 9900 | 0.1612 | 0.6 |
152
- | 0.0529 | 0.6401 | 10000 | 0.0762 | 0.85 |
153
- | 0.0928 | 0.6465 | 10100 | 0.0647 | 0.875 |
154
- | 0.0858 | 0.6529 | 10200 | 0.1147 | 0.735 |
155
- | 0.0486 | 0.6593 | 10300 | 0.0699 | 0.85 |
156
- | 0.1232 | 0.6657 | 10400 | 0.0697 | 0.87 |
157
- | 0.0504 | 0.6721 | 10500 | 0.0576 | 0.9 |
158
- | 0.0307 | 0.6785 | 10600 | 0.0409 | 0.935 |
159
- | 0.0489 | 0.6849 | 10700 | 0.0815 | 0.835 |
160
- | 0.0388 | 0.6913 | 10800 | 0.0256 | 0.97 |
161
- | 0.0296 | 0.6977 | 10900 | 0.0586 | 0.865 |
162
- | 0.0444 | 0.7041 | 11000 | 0.0278 | 0.96 |
163
- | 0.0251 | 0.7105 | 11100 | 0.0280 | 0.95 |
164
- | 0.0489 | 0.7169 | 11200 | 0.0504 | 0.895 |
165
- | 0.0264 | 0.7233 | 11300 | 0.0315 | 0.945 |
166
- | 0.0293 | 0.7297 | 11400 | 0.0254 | 0.955 |
167
- | 0.0143 | 0.7361 | 11500 | 0.0211 | 0.955 |
168
- | 0.0288 | 0.7425 | 11600 | 0.0614 | 0.855 |
169
- | 0.0278 | 0.7489 | 11700 | 0.0228 | 0.965 |
170
- | 0.034 | 0.7553 | 11800 | 0.0175 | 0.975 |
171
- | 0.0408 | 0.7617 | 11900 | 0.0374 | 0.93 |
172
- | 0.0255 | 0.7681 | 12000 | 0.0453 | 0.9 |
173
- | 0.0175 | 0.7745 | 12100 | 0.0229 | 0.965 |
174
- | 0.014 | 0.7809 | 12200 | 0.0112 | 0.995 |
175
- | 0.0213 | 0.7874 | 12300 | 0.0238 | 0.965 |
176
- | 0.0082 | 0.7938 | 12400 | 0.0110 | 0.985 |
177
- | 0.0211 | 0.8002 | 12500 | 0.0120 | 0.985 |
178
- | 0.0111 | 0.8066 | 12600 | 0.0117 | 0.98 |
179
- | 0.0074 | 0.8130 | 12700 | 0.0136 | 0.965 |
180
- | 0.0108 | 0.8194 | 12800 | 0.0083 | 0.995 |
181
- | 0.013 | 0.8258 | 12900 | 0.0098 | 0.99 |
182
- | 0.0076 | 0.8322 | 13000 | 0.0074 | 0.995 |
183
- | 0.0084 | 0.8386 | 13100 | 0.0106 | 0.98 |
184
- | 0.0119 | 0.8450 | 13200 | 0.0068 | 0.995 |
185
- | 0.0059 | 0.8514 | 13300 | 0.0079 | 0.98 |
186
- | 0.0064 | 0.8578 | 13400 | 0.0067 | 0.99 |
187
- | 0.0048 | 0.8642 | 13500 | 0.0059 | 0.995 |
188
- | 0.0043 | 0.8706 | 13600 | 0.0044 | 1.0 |
189
- | 0.007 | 0.8770 | 13700 | 0.0088 | 0.985 |
190
- | 0.0043 | 0.8834 | 13800 | 0.0042 | 1.0 |
191
- | 0.003 | 0.8898 | 13900 | 0.0060 | 0.995 |
192
- | 0.0037 | 0.8962 | 14000 | 0.0052 | 0.99 |
193
- | 0.0064 | 0.9026 | 14100 | 0.0089 | 0.985 |
194
- | 0.0029 | 0.9090 | 14200 | 0.0039 | 1.0 |
195
- | 0.0054 | 0.9154 | 14300 | 0.0037 | 1.0 |
196
- | 0.0031 | 0.9218 | 14400 | 0.0037 | 1.0 |
197
- | 0.0031 | 0.9282 | 14500 | 0.0035 | 1.0 |
198
- | 0.0039 | 0.9346 | 14600 | 0.0036 | 1.0 |
199
- | 0.0028 | 0.9410 | 14700 | 0.0039 | 1.0 |
200
- | 0.0027 | 0.9474 | 14800 | 0.0033 | 1.0 |
201
- | 0.0027 | 0.9538 | 14900 | 0.0031 | 1.0 |
202
- | 0.0037 | 0.9602 | 15000 | 0.0032 | 1.0 |
203
- | 0.0026 | 0.9666 | 15100 | 0.0031 | 1.0 |
204
- | 0.0025 | 0.9730 | 15200 | 0.0033 | 1.0 |
205
- | 0.0027 | 0.9794 | 15300 | 0.0031 | 1.0 |
206
- | 0.0033 | 0.9858 | 15400 | 0.0034 | 1.0 |
207
- | 0.0025 | 0.9922 | 15500 | 0.0033 | 1.0 |
208
- | 0.0025 | 0.9986 | 15600 | 0.0033 | 1.0 |
209
 
210
 
211
  ### Framework versions
 
16
 
17
  This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
18
  It achieves the following results on the evaluation set:
19
+ - Loss: 0.2067
20
+ - Accuracy: 0.75
21
 
22
  ## Model description
23
 
 
36
  ### Training hyperparameters
37
 
38
  The following hyperparameters were used during training:
39
+ - learning_rate: 0.0002
40
  - train_batch_size: 64
41
  - eval_batch_size: 64
42
  - seed: 42
 
49
 
50
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
51
  |:-------------:|:------:|:-----:|:---------------:|:--------:|
52
+ | No log | 0 | 0 | 2.6254 | 0.0 |
53
+ | 2.6109 | 0.0064 | 100 | 2.6078 | 0.0 |
54
+ | 2.5713 | 0.0128 | 200 | 2.5687 | 0.0 |
55
+ | 2.5492 | 0.0192 | 300 | 2.5395 | 0.0 |
56
+ | 2.5191 | 0.0256 | 400 | 2.5052 | 0.0 |
57
+ | 2.4652 | 0.0320 | 500 | 2.4670 | 0.0 |
58
+ | 2.435 | 0.0384 | 600 | 2.4292 | 0.0 |
59
+ | 2.4039 | 0.0448 | 700 | 2.3940 | 0.0 |
60
+ | 2.3781 | 0.0512 | 800 | 2.3642 | 0.0 |
61
+ | 2.35 | 0.0576 | 900 | 2.3376 | 0.0 |
62
+ | 2.3129 | 0.0640 | 1000 | 2.3098 | 0.0 |
63
+ | 2.2849 | 0.0704 | 1100 | 2.2799 | 0.0 |
64
+ | 2.2505 | 0.0768 | 1200 | 2.2264 | 0.0 |
65
+ | 2.2202 | 0.0832 | 1300 | 2.1897 | 0.0 |
66
+ | 2.1454 | 0.0896 | 1400 | 2.1558 | 0.0 |
67
+ | 2.1293 | 0.0960 | 1500 | 2.1155 | 0.0 |
68
+ | 2.0727 | 0.1024 | 1600 | 2.0485 | 0.0 |
69
+ | 2.0048 | 0.1088 | 1700 | 1.9935 | 0.0 |
70
+ | 2.0274 | 0.1152 | 1800 | 1.9687 | 0.0 |
71
+ | 1.953 | 0.1216 | 1900 | 1.9447 | 0.0 |
72
+ | 1.8883 | 0.1280 | 2000 | 1.8772 | 0.0 |
73
+ | 1.8263 | 0.1344 | 2100 | 1.8623 | 0.0 |
74
+ | 1.7997 | 0.1408 | 2200 | 1.8072 | 0.005 |
75
+ | 1.7646 | 0.1472 | 2300 | 1.7725 | 0.0 |
76
+ | 1.7121 | 0.1536 | 2400 | 1.7096 | 0.0 |
77
+ | 1.6922 | 0.1600 | 2500 | 1.6917 | 0.015 |
78
+ | 1.6736 | 0.1664 | 2600 | 1.6496 | 0.0 |
79
+ | 1.6291 | 0.1728 | 2700 | 1.6183 | 0.035 |
80
+ | 1.5893 | 0.1792 | 2800 | 1.5810 | 0.005 |
81
+ | 1.5395 | 0.1856 | 2900 | 1.5429 | 0.035 |
82
+ | 1.5109 | 0.1920 | 3000 | 1.5153 | 0.075 |
83
+ | 1.4911 | 0.1984 | 3100 | 1.4899 | 0.07 |
84
+ | 1.4687 | 0.2048 | 3200 | 1.4783 | 0.065 |
85
+ | 1.4461 | 0.2112 | 3300 | 1.4396 | 0.075 |
86
+ | 1.3921 | 0.2176 | 3400 | 1.4007 | 0.075 |
87
+ | 1.3629 | 0.2240 | 3500 | 1.3684 | 0.1 |
88
+ | 1.3245 | 0.2304 | 3600 | 1.3432 | 0.075 |
89
+ | 1.3085 | 0.2368 | 3700 | 1.3058 | 0.195 |
90
+ | 1.3496 | 0.2432 | 3800 | 1.2990 | 0.055 |
91
+ | 1.2774 | 0.2496 | 3900 | 1.2640 | 0.095 |
92
+ | 1.2665 | 0.2560 | 4000 | 1.2677 | 0.06 |
93
+ | 1.1992 | 0.2625 | 4100 | 1.2062 | 0.215 |
94
+ | 1.2042 | 0.2689 | 4200 | 1.1900 | 0.21 |
95
+ | 1.1635 | 0.2753 | 4300 | 1.1518 | 0.26 |
96
+ | 1.1682 | 0.2817 | 4400 | 1.1399 | 0.18 |
97
+ | 1.1194 | 0.2881 | 4500 | 1.1299 | 0.225 |
98
+ | 1.1014 | 0.2945 | 4600 | 1.0991 | 0.225 |
99
+ | 1.0721 | 0.3009 | 4700 | 1.0832 | 0.215 |
100
+ | 1.052 | 0.3073 | 4800 | 1.0435 | 0.325 |
101
+ | 1.0626 | 0.3137 | 4900 | 1.0431 | 0.285 |
102
+ | 1.0336 | 0.3201 | 5000 | 1.0169 | 0.275 |
103
+ | 1.0364 | 0.3265 | 5100 | 1.0671 | 0.075 |
104
+ | 0.9757 | 0.3329 | 5200 | 0.9752 | 0.375 |
105
+ | 0.9877 | 0.3393 | 5300 | 0.9627 | 0.325 |
106
+ | 0.9792 | 0.3457 | 5400 | 0.9401 | 0.345 |
107
+ | 0.9266 | 0.3521 | 5500 | 0.9213 | 0.365 |
108
+ | 0.9113 | 0.3585 | 5600 | 0.8966 | 0.415 |
109
+ | 0.8876 | 0.3649 | 5700 | 0.8923 | 0.275 |
110
+ | 0.8558 | 0.3713 | 5800 | 0.8789 | 0.28 |
111
+ | 0.8659 | 0.3777 | 5900 | 0.8660 | 0.3 |
112
+ | 0.8328 | 0.3841 | 6000 | 0.8422 | 0.375 |
113
+ | 0.8317 | 0.3905 | 6100 | 0.8459 | 0.28 |
114
+ | 0.8277 | 0.3969 | 6200 | 0.8762 | 0.155 |
115
+ | 0.7851 | 0.4033 | 6300 | 0.7940 | 0.4 |
116
+ | 0.7875 | 0.4097 | 6400 | 0.7926 | 0.36 |
117
+ | 0.8502 | 0.4161 | 6500 | 0.7876 | 0.375 |
118
+ | 0.7762 | 0.4225 | 6600 | 0.8018 | 0.295 |
119
+ | 0.8015 | 0.4289 | 6700 | 0.7519 | 0.365 |
120
+ | 0.7489 | 0.4353 | 6800 | 0.7534 | 0.36 |
121
+ | 0.7517 | 0.4417 | 6900 | 0.7896 | 0.2 |
122
+ | 0.7989 | 0.4481 | 7000 | 0.7280 | 0.36 |
123
+ | 0.6945 | 0.4545 | 7100 | 0.7047 | 0.37 |
124
+ | 0.6574 | 0.4609 | 7200 | 0.6533 | 0.54 |
125
+ | 0.7302 | 0.4673 | 7300 | 0.7296 | 0.26 |
126
+ | 0.688 | 0.4737 | 7400 | 0.6556 | 0.395 |
127
+ | 0.6391 | 0.4801 | 7500 | 0.6475 | 0.415 |
128
+ | 0.6368 | 0.4865 | 7600 | 0.6306 | 0.355 |
129
+ | 0.6125 | 0.4929 | 7700 | 0.6164 | 0.395 |
130
+ | 0.5952 | 0.4993 | 7800 | 0.6018 | 0.42 |
131
+ | 0.5939 | 0.5057 | 7900 | 0.6027 | 0.365 |
132
+ | 0.5922 | 0.5121 | 8000 | 0.5569 | 0.545 |
133
+ | 0.5471 | 0.5185 | 8100 | 0.5585 | 0.38 |
134
+ | 0.5395 | 0.5249 | 8200 | 0.5676 | 0.42 |
135
+ | 0.5494 | 0.5313 | 8300 | 0.5726 | 0.345 |
136
+ | 0.5166 | 0.5377 | 8400 | 0.5164 | 0.49 |
137
+ | 0.5454 | 0.5441 | 8500 | 0.5302 | 0.455 |
138
+ | 0.5121 | 0.5505 | 8600 | 0.4883 | 0.54 |
139
+ | 0.5356 | 0.5569 | 8700 | 0.4843 | 0.515 |
140
+ | 0.4726 | 0.5633 | 8800 | 0.4832 | 0.465 |
141
+ | 0.472 | 0.5697 | 8900 | 0.5029 | 0.45 |
142
+ | 0.4606 | 0.5761 | 9000 | 0.4561 | 0.55 |
143
+ | 0.4735 | 0.5825 | 9100 | 0.4549 | 0.52 |
144
+ | 0.4721 | 0.5889 | 9200 | 0.4391 | 0.55 |
145
+ | 0.4607 | 0.5953 | 9300 | 0.4354 | 0.495 |
146
+ | 0.4426 | 0.6017 | 9400 | 0.4215 | 0.57 |
147
+ | 0.4074 | 0.6081 | 9500 | 0.4147 | 0.55 |
148
+ | 0.3937 | 0.6145 | 9600 | 0.3986 | 0.575 |
149
+ | 0.4057 | 0.6209 | 9700 | 0.3876 | 0.605 |
150
+ | 0.4043 | 0.6273 | 9800 | 0.3881 | 0.565 |
151
+ | 0.3691 | 0.6337 | 9900 | 0.3787 | 0.59 |
152
+ | 0.3728 | 0.6401 | 10000 | 0.3860 | 0.5 |
153
+ | 0.3425 | 0.6465 | 10100 | 0.3778 | 0.52 |
154
+ | 0.4213 | 0.6529 | 10200 | 0.4044 | 0.47 |
155
+ | 0.3457 | 0.6593 | 10300 | 0.3736 | 0.535 |
156
+ | 0.3617 | 0.6657 | 10400 | 0.3520 | 0.545 |
157
+ | 0.3519 | 0.6721 | 10500 | 0.3561 | 0.57 |
158
+ | 0.3314 | 0.6785 | 10600 | 0.3393 | 0.6 |
159
+ | 0.3375 | 0.6849 | 10700 | 0.3368 | 0.61 |
160
+ | 0.3132 | 0.6913 | 10800 | 0.3140 | 0.67 |
161
+ | 0.2988 | 0.6977 | 10900 | 0.3258 | 0.56 |
162
+ | 0.3196 | 0.7041 | 11000 | 0.3215 | 0.555 |
163
+ | 0.3012 | 0.7105 | 11100 | 0.2978 | 0.625 |
164
+ | 0.2984 | 0.7169 | 11200 | 0.3184 | 0.53 |
165
+ | 0.2854 | 0.7233 | 11300 | 0.2925 | 0.625 |
166
+ | 0.3007 | 0.7297 | 11400 | 0.3168 | 0.53 |
167
+ | 0.2954 | 0.7361 | 11500 | 0.2840 | 0.675 |
168
+ | 0.2899 | 0.7425 | 11600 | 0.2734 | 0.72 |
169
+ | 0.3006 | 0.7489 | 11700 | 0.2771 | 0.62 |
170
+ | 0.2949 | 0.7553 | 11800 | 0.2746 | 0.68 |
171
+ | 0.2557 | 0.7617 | 11900 | 0.2814 | 0.665 |
172
+ | 0.2523 | 0.7681 | 12000 | 0.2641 | 0.685 |
173
+ | 0.3054 | 0.7745 | 12100 | 0.2987 | 0.53 |
174
+ | 0.2678 | 0.7809 | 12200 | 0.2528 | 0.7 |
175
+ | 0.2506 | 0.7874 | 12300 | 0.2647 | 0.6 |
176
+ | 0.2438 | 0.7938 | 12400 | 0.2464 | 0.695 |
177
+ | 0.2442 | 0.8002 | 12500 | 0.2424 | 0.725 |
178
+ | 0.2717 | 0.8066 | 12600 | 0.2565 | 0.66 |
179
+ | 0.2423 | 0.8130 | 12700 | 0.2455 | 0.68 |
180
+ | 0.2391 | 0.8194 | 12800 | 0.2422 | 0.68 |
181
+ | 0.2348 | 0.8258 | 12900 | 0.2366 | 0.7 |
182
+ | 0.2267 | 0.8322 | 13000 | 0.2376 | 0.69 |
183
+ | 0.2277 | 0.8386 | 13100 | 0.2295 | 0.71 |
184
+ | 0.2094 | 0.8450 | 13200 | 0.2281 | 0.71 |
185
+ | 0.2433 | 0.8514 | 13300 | 0.2349 | 0.705 |
186
+ | 0.2364 | 0.8578 | 13400 | 0.2224 | 0.74 |
187
+ | 0.2148 | 0.8642 | 13500 | 0.2257 | 0.695 |
188
+ | 0.2102 | 0.8706 | 13600 | 0.2260 | 0.695 |
189
+ | 0.2252 | 0.8770 | 13700 | 0.2234 | 0.71 |
190
+ | 0.2031 | 0.8834 | 13800 | 0.2185 | 0.725 |
191
+ | 0.2133 | 0.8898 | 13900 | 0.2198 | 0.74 |
192
+ | 0.2204 | 0.8962 | 14000 | 0.2129 | 0.745 |
193
+ | 0.2215 | 0.9026 | 14100 | 0.2151 | 0.755 |
194
+ | 0.1938 | 0.9090 | 14200 | 0.2142 | 0.73 |
195
+ | 0.2088 | 0.9154 | 14300 | 0.2135 | 0.73 |
196
+ | 0.202 | 0.9218 | 14400 | 0.2138 | 0.71 |
197
+ | 0.202 | 0.9282 | 14500 | 0.2096 | 0.75 |
198
+ | 0.2003 | 0.9346 | 14600 | 0.2104 | 0.745 |
199
+ | 0.1985 | 0.9410 | 14700 | 0.2106 | 0.725 |
200
+ | 0.2097 | 0.9474 | 14800 | 0.2071 | 0.745 |
201
+ | 0.2058 | 0.9538 | 14900 | 0.2070 | 0.775 |
202
+ | 0.2163 | 0.9602 | 15000 | 0.2080 | 0.755 |
203
+ | 0.2123 | 0.9666 | 15100 | 0.2067 | 0.755 |
204
+ | 0.2151 | 0.9730 | 15200 | 0.2082 | 0.74 |
205
+ | 0.1888 | 0.9794 | 15300 | 0.2069 | 0.75 |
206
+ | 0.2026 | 0.9858 | 15400 | 0.2069 | 0.75 |
207
+ | 0.1918 | 0.9922 | 15500 | 0.2065 | 0.75 |
208
+ | 0.1987 | 0.9986 | 15600 | 0.2067 | 0.75 |
209
 
210
 
211
  ### Framework versions
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0baf56f50c12865347bf348cb32647b19865461099168476efd40fa4674edbd7
3
  size 30712
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8611cd45dc5fb696ce0fd178b74ce0faa343bb5e8a96de2ba65c507261144211
3
  size 30712
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:53969669503c178e1471c7125c0acd80746293453c8d63eddada1c8e03871928
3
  size 5240
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6107d8c0ee59d015a0b12aea668d13371531e9b1fa22c5666c17a60dd6111c88
3
  size 5240