File size: 2,574 Bytes
b6765e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
license: mit
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: fine-tuned-DatasetQAS-IDK-MRC-with-indobert-large-p2-with-ITTL-without-freeze-LR-1e-05
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# fine-tuned-DatasetQAS-IDK-MRC-with-indobert-large-p2-with-ITTL-without-freeze-LR-1e-05

This model is a fine-tuned version of [indobenchmark/indobert-large-p2](https://huggingface.co/indobenchmark/indobert-large-p2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2364
- Exact Match: 50.2618
- F1: 57.5214

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Exact Match | F1      |
|:-------------:|:-----:|:----:|:---------------:|:-----------:|:-------:|
| 6.151         | 0.49  | 36   | 2.7223          | 32.5916     | 35.4445 |
| 3.5424        | 0.98  | 72   | 2.0664          | 24.2147     | 31.0371 |
| 2.2082        | 1.48  | 108  | 1.7388          | 28.0105     | 37.2690 |
| 2.2082        | 1.97  | 144  | 1.4742          | 37.0419     | 45.3625 |
| 1.6932        | 2.46  | 180  | 1.3193          | 43.3246     | 51.1270 |
| 1.3154        | 2.95  | 216  | 1.2731          | 46.2042     | 53.5503 |
| 1.1699        | 3.45  | 252  | 1.2327          | 46.4660     | 53.5656 |
| 1.1699        | 3.94  | 288  | 1.1998          | 48.1675     | 55.1907 |
| 1.0749        | 4.44  | 324  | 1.1949          | 51.0471     | 57.7164 |
| 0.9423        | 4.93  | 360  | 1.1855          | 50.6545     | 57.3903 |
| 0.9423        | 5.42  | 396  | 1.1931          | 51.3089     | 58.5981 |
| 0.9036        | 5.91  | 432  | 1.2045          | 50.3927     | 57.7468 |
| 0.8324        | 6.41  | 468  | 1.2363          | 48.2984     | 55.5302 |
| 0.7846        | 6.9   | 504  | 1.2364          | 50.2618     | 57.5214 |


### Framework versions

- Transformers 4.26.1
- Pytorch 1.13.1+cu117
- Datasets 2.2.0
- Tokenizers 0.13.2