fine-tuned-DatasetQAS-TYDI-QA-ID-with-indobert-base-uncased-with-ITTL-without-freeze-LR-1e-05
This model is a fine-tuned version of indolem/indobert-base-uncased on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2784
- Exact Match: 53.4392
- F1: 68.7244
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Exact Match |
F1 |
6.1764 |
0.5 |
19 |
3.7674 |
10.4056 |
23.6332 |
6.1764 |
1.0 |
38 |
2.7985 |
19.5767 |
32.6228 |
3.8085 |
1.49 |
57 |
2.4169 |
22.0459 |
35.4084 |
3.8085 |
1.99 |
76 |
2.2811 |
25.9259 |
38.3963 |
3.8085 |
2.49 |
95 |
2.1607 |
28.0423 |
40.3901 |
2.3932 |
2.99 |
114 |
2.0488 |
31.0406 |
43.7059 |
2.3932 |
3.49 |
133 |
1.9787 |
34.3915 |
46.3655 |
2.0772 |
3.98 |
152 |
1.8661 |
37.2134 |
49.1483 |
2.0772 |
4.48 |
171 |
1.7893 |
40.2116 |
52.4989 |
2.0772 |
4.98 |
190 |
1.7014 |
41.9753 |
54.9197 |
1.7645 |
5.48 |
209 |
1.5940 |
44.2681 |
58.2134 |
1.7645 |
5.98 |
228 |
1.4972 |
46.2081 |
60.4997 |
1.7645 |
6.47 |
247 |
1.4214 |
48.8536 |
63.4371 |
1.5035 |
6.97 |
266 |
1.3676 |
50.6173 |
65.4663 |
1.5035 |
7.47 |
285 |
1.3357 |
52.2046 |
67.1759 |
1.3206 |
7.97 |
304 |
1.3149 |
53.0864 |
68.0698 |
1.3206 |
8.47 |
323 |
1.2988 |
53.4392 |
68.3971 |
1.3206 |
8.96 |
342 |
1.2894 |
53.6155 |
68.8897 |
1.2472 |
9.46 |
361 |
1.2820 |
53.4392 |
68.5835 |
1.2472 |
9.96 |
380 |
1.2784 |
53.4392 |
68.7244 |
Framework versions
- Transformers 4.27.4
- Pytorch 1.13.1+cu117
- Datasets 2.2.0
- Tokenizers 0.13.2