segformer-b0-finetuned-cityscapes-1024-1024_corm

This model is a fine-tuned version of nvidia/segformer-b0-finetuned-cityscapes-1024-1024 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0506
  • Mean Iou: 0.9091
  • Mean Accuracy: 0.9514
  • Overall Accuracy: 0.9835
  • Accuracy Background: 0.9977
  • Accuracy Corm: 0.9256
  • Accuracy Damage: 0.9308
  • Iou Background: 0.9938
  • Iou Corm: 0.8393
  • Iou Damage: 0.8942

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Background Accuracy Corm Accuracy Damage Iou Background Iou Corm Iou Damage
0.8589 0.6061 20 0.8411 0.4729 0.5967 0.8533 0.9785 0.5630 0.2486 0.9291 0.2623 0.2273
0.7143 1.2121 40 0.6737 0.6855 0.8154 0.9261 0.9743 0.7133 0.7586 0.9723 0.4438 0.6403
0.5785 1.8182 60 0.5154 0.7300 0.8494 0.9393 0.9707 0.6523 0.9253 0.9704 0.4854 0.7342
0.4449 2.4242 80 0.3898 0.8138 0.9106 0.9596 0.9778 0.8207 0.9333 0.9771 0.6594 0.8048
0.3313 3.0303 100 0.3061 0.8287 0.9246 0.9633 0.9820 0.9175 0.8743 0.9809 0.7007 0.8046
0.2799 3.6364 120 0.2367 0.8545 0.9230 0.9717 0.9907 0.8453 0.9331 0.9882 0.7423 0.8330
0.2482 4.2424 140 0.2088 0.8669 0.9301 0.9746 0.9927 0.8707 0.9269 0.9899 0.7653 0.8455
0.2134 4.8485 160 0.1841 0.8637 0.9343 0.9739 0.9939 0.9403 0.8687 0.9908 0.7666 0.8337
0.1695 5.4545 180 0.1585 0.8832 0.9405 0.9780 0.9943 0.9053 0.9221 0.9916 0.7954 0.8625
0.1581 6.0606 200 0.1414 0.8895 0.9410 0.9795 0.9959 0.8998 0.9273 0.9922 0.8051 0.8711
0.1413 6.6667 220 0.1253 0.8943 0.9430 0.9805 0.9966 0.9060 0.9263 0.9926 0.8141 0.8763
0.1125 7.2727 240 0.1138 0.8955 0.9453 0.9807 0.9965 0.9193 0.9203 0.9927 0.8169 0.8770
0.1195 7.8788 260 0.1124 0.8811 0.9411 0.9779 0.9967 0.9503 0.8763 0.9926 0.7970 0.8537
0.1032 8.4848 280 0.1049 0.8912 0.9457 0.9798 0.9964 0.9413 0.8994 0.9927 0.8117 0.8692
0.104 9.0909 300 0.0912 0.9013 0.9459 0.9819 0.9971 0.9070 0.9337 0.9929 0.8255 0.8856
0.0994 9.6970 320 0.0887 0.9022 0.9473 0.9820 0.9972 0.9172 0.9275 0.9930 0.8275 0.8860
0.0914 10.3030 340 0.0866 0.8999 0.9471 0.9815 0.9974 0.9278 0.9160 0.9930 0.8249 0.8819
0.0917 10.9091 360 0.0813 0.9032 0.9473 0.9822 0.9975 0.9166 0.9279 0.9930 0.8293 0.8873
0.0822 11.5152 380 0.0774 0.9038 0.9454 0.9825 0.9972 0.8900 0.9490 0.9932 0.8280 0.8903
0.078 12.1212 400 0.0766 0.9035 0.9488 0.9823 0.9973 0.9244 0.9247 0.9932 0.8301 0.8871
0.0782 12.7273 420 0.0739 0.9027 0.9490 0.9822 0.9974 0.9302 0.9195 0.9933 0.8293 0.8856
0.0759 13.3333 440 0.0715 0.9025 0.9487 0.9821 0.9975 0.9316 0.9170 0.9933 0.8292 0.8851
0.066 13.9394 460 0.0691 0.9059 0.9480 0.9828 0.9975 0.9089 0.9377 0.9934 0.8328 0.8915
0.0774 14.5455 480 0.0674 0.9059 0.9493 0.9827 0.9976 0.9237 0.9267 0.9933 0.8339 0.8904
0.0719 15.1515 500 0.0690 0.9034 0.9488 0.9823 0.9977 0.9305 0.9183 0.9933 0.8307 0.8862
0.0713 15.7576 520 0.0666 0.9003 0.9486 0.9817 0.9974 0.9368 0.9117 0.9935 0.8262 0.8814
0.0647 16.3636 540 0.0645 0.9033 0.9498 0.9823 0.9974 0.9346 0.9173 0.9934 0.8307 0.8858
0.0576 16.9697 560 0.0637 0.9046 0.9499 0.9826 0.9975 0.9301 0.9221 0.9936 0.8323 0.8879
0.0598 17.5758 580 0.0625 0.9044 0.9501 0.9825 0.9974 0.9333 0.9197 0.9935 0.8321 0.8875
0.0676 18.1818 600 0.0644 0.8991 0.9489 0.9815 0.9974 0.9447 0.9047 0.9936 0.8243 0.8794
0.0474 18.7879 620 0.0624 0.9018 0.9503 0.9820 0.9973 0.9427 0.9108 0.9936 0.8285 0.8832
0.0611 19.3939 640 0.0606 0.9064 0.9504 0.9829 0.9976 0.9282 0.9254 0.9936 0.8350 0.8905
0.058 20.0 660 0.0596 0.9048 0.9508 0.9826 0.9973 0.9355 0.9197 0.9936 0.8330 0.8877
0.0574 20.6061 680 0.0575 0.9082 0.9484 0.9834 0.9973 0.8972 0.9507 0.9938 0.8356 0.8951
0.0562 21.2121 700 0.0576 0.9065 0.9465 0.9831 0.9973 0.8870 0.9553 0.9937 0.8319 0.8939
0.0551 21.8182 720 0.0571 0.9067 0.9515 0.9830 0.9972 0.9299 0.9274 0.9938 0.8361 0.8903
0.0498 22.4242 740 0.0564 0.9090 0.9509 0.9834 0.9976 0.9217 0.9336 0.9936 0.8388 0.8945
0.0566 23.0303 760 0.0554 0.9067 0.9511 0.9830 0.9975 0.9307 0.9251 0.9938 0.8359 0.8904
0.0436 23.6364 780 0.0567 0.9056 0.9509 0.9827 0.9976 0.9362 0.9191 0.9936 0.8344 0.8889
0.0586 24.2424 800 0.0548 0.9081 0.9515 0.9832 0.9974 0.9273 0.9296 0.9938 0.8380 0.8924
0.0497 24.8485 820 0.0549 0.9091 0.9511 0.9834 0.9976 0.9227 0.9331 0.9937 0.8390 0.8946
0.0535 25.4545 840 0.0544 0.9073 0.9510 0.9831 0.9976 0.9296 0.9256 0.9937 0.8368 0.8913
0.0514 26.0606 860 0.0539 0.9096 0.9514 0.9836 0.9975 0.9205 0.9362 0.9938 0.8399 0.8953
0.0684 26.6667 880 0.0550 0.9055 0.9511 0.9827 0.9976 0.9383 0.9174 0.9937 0.8344 0.8884
0.0542 27.2727 900 0.0524 0.9100 0.9512 0.9836 0.9976 0.9196 0.9364 0.9938 0.8403 0.8959
0.0455 27.8788 920 0.0534 0.9083 0.9518 0.9833 0.9975 0.9296 0.9282 0.9938 0.8384 0.8929
0.0512 28.4848 940 0.0525 0.9095 0.9504 0.9836 0.9977 0.9149 0.9386 0.9938 0.8393 0.8954
0.0486 29.0909 960 0.0524 0.9083 0.9516 0.9833 0.9976 0.9292 0.9280 0.9938 0.8383 0.8927
0.0486 29.6970 980 0.0517 0.9099 0.9509 0.9836 0.9976 0.9172 0.9380 0.9938 0.8401 0.8958
0.0388 30.3030 1000 0.0514 0.9101 0.9510 0.9837 0.9975 0.9147 0.9408 0.9938 0.8402 0.8962
0.0571 30.9091 1020 0.0518 0.9091 0.9513 0.9834 0.9977 0.9247 0.9314 0.9938 0.8392 0.8942
0.0515 31.5152 1040 0.0511 0.9103 0.9510 0.9837 0.9975 0.9135 0.9418 0.9939 0.8404 0.8966
0.049 32.1212 1060 0.0517 0.9100 0.9510 0.9836 0.9976 0.9171 0.9385 0.9938 0.8402 0.8958
0.0533 32.7273 1080 0.0513 0.9095 0.9514 0.9835 0.9975 0.9221 0.9346 0.9938 0.8398 0.8949
0.0443 33.3333 1100 0.0513 0.9092 0.9513 0.9835 0.9977 0.9245 0.9317 0.9938 0.8395 0.8944
0.0573 33.9394 1120 0.0516 0.9089 0.9515 0.9834 0.9976 0.9270 0.9297 0.9938 0.8390 0.8938
0.0421 34.5455 1140 0.0516 0.9082 0.9512 0.9833 0.9977 0.9294 0.9264 0.9938 0.8382 0.8927
0.0509 35.1515 1160 0.0503 0.9102 0.9508 0.9837 0.9976 0.9145 0.9403 0.9938 0.8403 0.8966
0.0854 35.7576 1180 0.0511 0.9087 0.9518 0.9834 0.9975 0.9285 0.9293 0.9938 0.8388 0.8934
0.0522 36.3636 1200 0.0508 0.9089 0.9516 0.9834 0.9976 0.9269 0.9302 0.9938 0.8392 0.8938
0.0648 36.9697 1220 0.0503 0.9103 0.9514 0.9837 0.9975 0.9175 0.9391 0.9939 0.8408 0.8964
0.0513 37.5758 1240 0.0502 0.9099 0.9511 0.9836 0.9977 0.9203 0.9353 0.9938 0.8402 0.8957
0.0494 38.1818 1260 0.0512 0.9093 0.9516 0.9835 0.9976 0.9257 0.9316 0.9938 0.8396 0.8944
0.0513 38.7879 1280 0.0510 0.9096 0.9517 0.9836 0.9975 0.9232 0.9343 0.9939 0.8400 0.8949
0.0573 39.3939 1300 0.0508 0.9092 0.9514 0.9835 0.9976 0.9249 0.9318 0.9938 0.8395 0.8943
0.0627 40.0 1320 0.0506 0.9091 0.9514 0.9835 0.9977 0.9256 0.9308 0.9938 0.8393 0.8942

Framework versions

  • Transformers 4.44.1
  • Pytorch 2.6.0+cpu
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
122
Safetensors
Model size
3.72M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for mujerry/segformer-b0-finetuned-cityscapes-1024-1024_corm

Finetuned
(4)
this model