Mukul Ranjan's picture
2 3

Mukul Ranjan

mukul54
ยท

AI & ML interests

Efficiency, Optimization

Recent Activity

liked a model 11 days ago
deepseek-ai/DeepSeek-V3-Base
liked a Space 12 days ago
MBZUAI-LLM/Mobile-MMLU-Challenge
liked a model 16 days ago
GoodiesHere/Apollo-LMMs-Apollo-3B-t32
View all activity

Organizations

MBZUAI-LLM's profile picture Mission_CVPR's profile picture

mukul54's activity

reacted to merve's post with ๐Ÿค— 16 days ago
view post
Post
3221
Apollo is a new family of open-source video language models by Meta, where 3B model outperforms most 7B models and 7B outperforms most 30B models ๐Ÿงถ

โœจ the models come in 1.5B https://huggingface.co/Apollo-LMMs/Apollo-1_5B-t32, 3B https://huggingface.co/Apollo-LMMs/Apollo-3B-t32 and 7B https://huggingface.co/Apollo-LMMs/Apollo-7B-t32 with A2.0 license, based on Qwen1.5 & Qwen2
โœจ the authors also release a benchmark dataset https://huggingface.co/spaces/Apollo-LMMs/ApolloBench

The paper has a lot of experiments (they trained 84 models!) about what makes the video LMs work โฏ๏ธ

Try the demo for best setup here https://huggingface.co/spaces/Apollo-LMMs/Apollo-3B
they evaluate sampling strategies, scaling laws for models and datasets, video representation and more!
> The authors find out that whatever design decision was applied to small models also scale properly when the model and dataset are scaled ๐Ÿ“ˆ scaling dataset has diminishing returns for smaller models
> They evaluate frame sampling strategies, and find that FPS sampling is better than uniform sampling, and they find 8-32 tokens per frame optimal
> They also compare image encoders, they try a variation of models from shape optimized SigLIP to DINOv2
they find google/siglip-so400m-patch14-384 to be most powerful ๐Ÿ”ฅ
> they also compare freezing different parts of models, training all stages with some frozen parts give the best yield

They eventually release three models, where Apollo-3B outperforms most 7B models and Apollo 7B outperforms 30B models ๐Ÿ”ฅ
ยท