fofr-sdxl-emoji / cog_sdxl /preprocess.py
multimodalart's picture
Duplicate from julien-c/fofr-sdxl-emoji
5a0ae56 verified
# Have SwinIR upsample
# Have BLIP auto caption
# Have CLIPSeg auto mask concept
import gc
import fnmatch
import mimetypes
import os
import re
import shutil
import tarfile
from pathlib import Path
from typing import List, Literal, Optional, Tuple, Union
from zipfile import ZipFile
import cv2
import mediapipe as mp
import numpy as np
import pandas as pd
import torch
from PIL import Image, ImageFilter
from tqdm import tqdm
from transformers import (
BlipForConditionalGeneration,
BlipProcessor,
CLIPSegForImageSegmentation,
CLIPSegProcessor,
Swin2SRForImageSuperResolution,
Swin2SRImageProcessor,
)
from predict import download_weights
# model is fixed to Salesforce/blip-image-captioning-large
BLIP_URL = "https://weights.replicate.delivery/default/blip_large/blip_large.tar"
BLIP_PROCESSOR_URL = (
"https://weights.replicate.delivery/default/blip_processor/blip_processor.tar"
)
BLIP_PATH = "./blip-cache"
BLIP_PROCESSOR_PATH = "./blip-proc-cache"
# model is fixed to CIDAS/clipseg-rd64-refined
CLIPSEG_URL = "https://weights.replicate.delivery/default/clip_seg_rd64_refined/clip_seg_rd64_refined.tar"
CLIPSEG_PROCESSOR = "https://weights.replicate.delivery/default/clip_seg_processor/clip_seg_processor.tar"
CLIPSEG_PATH = "./clipseg-cache"
CLIPSEG_PROCESSOR_PATH = "./clipseg-proc-cache"
# model is fixed to caidas/swin2SR-realworld-sr-x4-64-bsrgan-psnr
SWIN2SR_URL = "https://weights.replicate.delivery/default/swin2sr_realworld_sr_x4_64_bsrgan_psnr/swin2sr_realworld_sr_x4_64_bsrgan_psnr.tar"
SWIN2SR_PATH = "./swin2sr-cache"
TEMP_OUT_DIR = "./temp/"
TEMP_IN_DIR = "./temp_in/"
CSV_MATCH = "caption"
def preprocess(
input_images_filetype: str,
input_zip_path: Path,
caption_text: str,
mask_target_prompts: str,
target_size: int,
crop_based_on_salience: bool,
use_face_detection_instead: bool,
temp: float,
substitution_tokens: List[str],
) -> Path:
# assert str(files).endswith(".zip"), "files must be a zip file"
# clear TEMP_IN_DIR first.
for path in [TEMP_OUT_DIR, TEMP_IN_DIR]:
if os.path.exists(path):
shutil.rmtree(path)
os.makedirs(path)
caption_csv = None
if input_images_filetype == "zip" or str(input_zip_path).endswith(".zip"):
with ZipFile(str(input_zip_path), "r") as zip_ref:
for zip_info in zip_ref.infolist():
if zip_info.filename[-1] == "/" or zip_info.filename.startswith(
"__MACOSX"
):
continue
mt = mimetypes.guess_type(zip_info.filename)
if mt and mt[0] and mt[0].startswith("image/"):
zip_info.filename = os.path.basename(zip_info.filename)
zip_ref.extract(zip_info, TEMP_IN_DIR)
if (
mt
and mt[0]
and mt[0] == "text/csv"
and CSV_MATCH in zip_info.filename
):
zip_info.filename = os.path.basename(zip_info.filename)
zip_ref.extract(zip_info, TEMP_IN_DIR)
caption_csv = os.path.join(TEMP_IN_DIR, zip_info.filename)
elif input_images_filetype == "tar" or str(input_zip_path).endswith(".tar"):
assert str(input_zip_path).endswith(
".tar"
), "files must be a tar file if not zip"
with tarfile.open(input_zip_path, "r") as tar_ref:
for tar_info in tar_ref:
if tar_info.name[-1] == "/" or tar_info.name.startswith("__MACOSX"):
continue
mt = mimetypes.guess_type(tar_info.name)
if mt and mt[0] and mt[0].startswith("image/"):
tar_info.name = os.path.basename(tar_info.name)
tar_ref.extract(tar_info, TEMP_IN_DIR)
if mt and mt[0] and mt[0] == "text/csv" and CSV_MATCH in tar_info.name:
tar_info.name = os.path.basename(tar_info.name)
tar_ref.extract(tar_info, TEMP_IN_DIR)
caption_csv = os.path.join(TEMP_IN_DIR, tar_info.name)
else:
assert False, "input_images_filetype must be zip or tar"
output_dir: str = TEMP_OUT_DIR
load_and_save_masks_and_captions(
files=TEMP_IN_DIR,
output_dir=output_dir,
caption_text=caption_text,
caption_csv=caption_csv,
mask_target_prompts=mask_target_prompts,
target_size=target_size,
crop_based_on_salience=crop_based_on_salience,
use_face_detection_instead=use_face_detection_instead,
temp=temp,
substitution_tokens=substitution_tokens,
)
return Path(TEMP_OUT_DIR)
@torch.no_grad()
@torch.cuda.amp.autocast()
def swin_ir_sr(
images: List[Image.Image],
target_size: Optional[Tuple[int, int]] = None,
device=torch.device("cuda:0" if torch.cuda.is_available() else "cpu"),
**kwargs,
) -> List[Image.Image]:
"""
Upscales images using SwinIR. Returns a list of PIL images.
If the image is already larger than the target size, it will not be upscaled
and will be returned as is.
"""
if not os.path.exists(SWIN2SR_PATH):
download_weights(SWIN2SR_URL, SWIN2SR_PATH)
model = Swin2SRForImageSuperResolution.from_pretrained(SWIN2SR_PATH).to(device)
processor = Swin2SRImageProcessor()
out_images = []
for image in tqdm(images):
ori_w, ori_h = image.size
if target_size is not None:
if ori_w >= target_size[0] and ori_h >= target_size[1]:
out_images.append(image)
continue
inputs = processor(image, return_tensors="pt").to(device)
with torch.no_grad():
outputs = model(**inputs)
output = (
outputs.reconstruction.data.squeeze().float().cpu().clamp_(0, 1).numpy()
)
output = np.moveaxis(output, source=0, destination=-1)
output = (output * 255.0).round().astype(np.uint8)
output = Image.fromarray(output)
out_images.append(output)
return out_images
@torch.no_grad()
@torch.cuda.amp.autocast()
def clipseg_mask_generator(
images: List[Image.Image],
target_prompts: Union[List[str], str],
device=torch.device("cuda:0" if torch.cuda.is_available() else "cpu"),
bias: float = 0.01,
temp: float = 1.0,
**kwargs,
) -> List[Image.Image]:
"""
Returns a greyscale mask for each image, where the mask is the probability of the target prompt being present in the image
"""
if isinstance(target_prompts, str):
print(
f'Warning: only one target prompt "{target_prompts}" was given, so it will be used for all images'
)
target_prompts = [target_prompts] * len(images)
if not os.path.exists(CLIPSEG_PROCESSOR_PATH):
download_weights(CLIPSEG_PROCESSOR, CLIPSEG_PROCESSOR_PATH)
if not os.path.exists(CLIPSEG_PATH):
download_weights(CLIPSEG_URL, CLIPSEG_PATH)
processor = CLIPSegProcessor.from_pretrained(CLIPSEG_PROCESSOR_PATH)
model = CLIPSegForImageSegmentation.from_pretrained(CLIPSEG_PATH).to(device)
masks = []
for image, prompt in tqdm(zip(images, target_prompts)):
original_size = image.size
inputs = processor(
text=[prompt, ""],
images=[image] * 2,
padding="max_length",
truncation=True,
return_tensors="pt",
).to(device)
outputs = model(**inputs)
logits = outputs.logits
probs = torch.nn.functional.softmax(logits / temp, dim=0)[0]
probs = (probs + bias).clamp_(0, 1)
probs = 255 * probs / probs.max()
# make mask greyscale
mask = Image.fromarray(probs.cpu().numpy()).convert("L")
# resize mask to original size
mask = mask.resize(original_size)
masks.append(mask)
return masks
@torch.no_grad()
def blip_captioning_dataset(
images: List[Image.Image],
text: Optional[str] = None,
device=torch.device("cuda" if torch.cuda.is_available() else "cpu"),
substitution_tokens: Optional[List[str]] = None,
**kwargs,
) -> List[str]:
"""
Returns a list of captions for the given images
"""
if not os.path.exists(BLIP_PROCESSOR_PATH):
download_weights(BLIP_PROCESSOR_URL, BLIP_PROCESSOR_PATH)
if not os.path.exists(BLIP_PATH):
download_weights(BLIP_URL, BLIP_PATH)
processor = BlipProcessor.from_pretrained(BLIP_PROCESSOR_PATH)
model = BlipForConditionalGeneration.from_pretrained(BLIP_PATH).to(device)
captions = []
text = text.strip()
print(f"Input captioning text: {text}")
for image in tqdm(images):
inputs = processor(image, return_tensors="pt").to("cuda")
out = model.generate(
**inputs, max_length=150, do_sample=True, top_k=50, temperature=0.7
)
caption = processor.decode(out[0], skip_special_tokens=True)
# BLIP 2 lowercases all caps tokens. This should properly replace them w/o messing up subwords. I'm sure there's a better way to do this.
for token in substitution_tokens:
print(token)
sub_cap = " " + caption + " "
print(sub_cap)
sub_cap = sub_cap.replace(" " + token.lower() + " ", " " + token + " ")
caption = sub_cap.strip()
captions.append(text + " " + caption)
print("Generated captions", captions)
return captions
def face_mask_google_mediapipe(
images: List[Image.Image], blur_amount: float = 0.0, bias: float = 50.0
) -> List[Image.Image]:
"""
Returns a list of images with masks on the face parts.
"""
mp_face_detection = mp.solutions.face_detection
mp_face_mesh = mp.solutions.face_mesh
face_detection = mp_face_detection.FaceDetection(
model_selection=1, min_detection_confidence=0.1
)
face_mesh = mp_face_mesh.FaceMesh(
static_image_mode=True, max_num_faces=1, min_detection_confidence=0.1
)
masks = []
for image in tqdm(images):
image_np = np.array(image)
# Perform face detection
results_detection = face_detection.process(image_np)
ih, iw, _ = image_np.shape
if results_detection.detections:
for detection in results_detection.detections:
bboxC = detection.location_data.relative_bounding_box
bbox = (
int(bboxC.xmin * iw),
int(bboxC.ymin * ih),
int(bboxC.width * iw),
int(bboxC.height * ih),
)
# make sure bbox is within image
bbox = (
max(0, bbox[0]),
max(0, bbox[1]),
min(iw - bbox[0], bbox[2]),
min(ih - bbox[1], bbox[3]),
)
print(bbox)
# Extract face landmarks
face_landmarks = face_mesh.process(
image_np[bbox[1] : bbox[1] + bbox[3], bbox[0] : bbox[0] + bbox[2]]
).multi_face_landmarks
# https://github.com/google/mediapipe/issues/1615
# This was def helpful
indexes = [
10,
338,
297,
332,
284,
251,
389,
356,
454,
323,
361,
288,
397,
365,
379,
378,
400,
377,
152,
148,
176,
149,
150,
136,
172,
58,
132,
93,
234,
127,
162,
21,
54,
103,
67,
109,
]
if face_landmarks:
mask = Image.new("L", (iw, ih), 0)
mask_np = np.array(mask)
for face_landmark in face_landmarks:
face_landmark = [face_landmark.landmark[idx] for idx in indexes]
landmark_points = [
(int(l.x * bbox[2]) + bbox[0], int(l.y * bbox[3]) + bbox[1])
for l in face_landmark
]
mask_np = cv2.fillPoly(
mask_np, [np.array(landmark_points)], 255
)
mask = Image.fromarray(mask_np)
# Apply blur to the mask
if blur_amount > 0:
mask = mask.filter(ImageFilter.GaussianBlur(blur_amount))
# Apply bias to the mask
if bias > 0:
mask = np.array(mask)
mask = mask + bias * np.ones(mask.shape, dtype=mask.dtype)
mask = np.clip(mask, 0, 255)
mask = Image.fromarray(mask)
# Convert mask to 'L' mode (grayscale) before saving
mask = mask.convert("L")
masks.append(mask)
else:
# If face landmarks are not available, add a black mask of the same size as the image
masks.append(Image.new("L", (iw, ih), 255))
else:
print("No face detected, adding full mask")
# If no face is detected, add a white mask of the same size as the image
masks.append(Image.new("L", (iw, ih), 255))
return masks
def _crop_to_square(
image: Image.Image, com: List[Tuple[int, int]], resize_to: Optional[int] = None
):
cx, cy = com
width, height = image.size
if width > height:
left_possible = max(cx - height / 2, 0)
left = min(left_possible, width - height)
right = left + height
top = 0
bottom = height
else:
left = 0
right = width
top_possible = max(cy - width / 2, 0)
top = min(top_possible, height - width)
bottom = top + width
image = image.crop((left, top, right, bottom))
if resize_to:
image = image.resize((resize_to, resize_to), Image.Resampling.LANCZOS)
return image
def _center_of_mass(mask: Image.Image):
"""
Returns the center of mass of the mask
"""
x, y = np.meshgrid(np.arange(mask.size[0]), np.arange(mask.size[1]))
mask_np = np.array(mask) + 0.01
x_ = x * mask_np
y_ = y * mask_np
x = np.sum(x_) / np.sum(mask_np)
y = np.sum(y_) / np.sum(mask_np)
return x, y
def load_and_save_masks_and_captions(
files: Union[str, List[str]],
output_dir: str = TEMP_OUT_DIR,
caption_text: Optional[str] = None,
caption_csv: Optional[str] = None,
mask_target_prompts: Optional[Union[List[str], str]] = None,
target_size: int = 1024,
crop_based_on_salience: bool = True,
use_face_detection_instead: bool = False,
temp: float = 1.0,
n_length: int = -1,
substitution_tokens: Optional[List[str]] = None,
):
"""
Loads images from the given files, generates masks for them, and saves the masks and captions and upscale images
to output dir. If mask_target_prompts is given, it will generate kinda-segmentation-masks for the prompts and save them as well.
Example:
>>> x = load_and_save_masks_and_captions(
files="./data/images",
output_dir="./data/masks_and_captions",
caption_text="a photo of",
mask_target_prompts="cat",
target_size=768,
crop_based_on_salience=True,
use_face_detection_instead=False,
temp=1.0,
n_length=-1,
)
"""
os.makedirs(output_dir, exist_ok=True)
# load images
if isinstance(files, str):
# check if it is a directory
if os.path.isdir(files):
# get all the .png .jpg in the directory
files = (
_find_files("*.png", files)
+ _find_files("*.jpg", files)
+ _find_files("*.jpeg", files)
)
if len(files) == 0:
raise Exception(
f"No files found in {files}. Either {files} is not a directory or it does not contain any .png or .jpg/jpeg files."
)
if n_length == -1:
n_length = len(files)
files = sorted(files)[:n_length]
print("Image files: ", files)
images = [Image.open(file).convert("RGB") for file in files]
# captions
if caption_csv:
print(f"Using provided captions")
caption_df = pd.read_csv(caption_csv)
# sort images to be consistent with 'sorted' above
caption_df = caption_df.sort_values("image_file")
captions = caption_df["caption"].values
print("Captions: ", captions)
if len(captions) != len(images):
print("Not the same number of captions as images!")
print(f"Num captions: {len(captions)}, Num images: {len(images)}")
print("Captions: ", captions)
print("Images: ", files)
raise Exception(
"Not the same number of captions as images! Check that all files passed in have a caption in your caption csv, and vice versa"
)
else:
print(f"Generating {len(images)} captions...")
captions = blip_captioning_dataset(
images, text=caption_text, substitution_tokens=substitution_tokens
)
if mask_target_prompts is None:
mask_target_prompts = ""
temp = 999
print(f"Generating {len(images)} masks...")
if not use_face_detection_instead:
seg_masks = clipseg_mask_generator(
images=images, target_prompts=mask_target_prompts, temp=temp
)
else:
seg_masks = face_mask_google_mediapipe(images=images)
# find the center of mass of the mask
if crop_based_on_salience:
coms = [_center_of_mass(mask) for mask in seg_masks]
else:
coms = [(image.size[0] / 2, image.size[1] / 2) for image in images]
# based on the center of mass, crop the image to a square
images = [
_crop_to_square(image, com, resize_to=None) for image, com in zip(images, coms)
]
print(f"Upscaling {len(images)} images...")
# upscale images anyways
images = swin_ir_sr(images, target_size=(target_size, target_size))
images = [
image.resize((target_size, target_size), Image.Resampling.LANCZOS)
for image in images
]
seg_masks = [
_crop_to_square(mask, com, resize_to=target_size)
for mask, com in zip(seg_masks, coms)
]
data = []
# clean TEMP_OUT_DIR first
if os.path.exists(output_dir):
for file in os.listdir(output_dir):
os.remove(os.path.join(output_dir, file))
os.makedirs(output_dir, exist_ok=True)
# iterate through the images, masks, and captions and add a row to the dataframe for each
for idx, (image, mask, caption) in enumerate(zip(images, seg_masks, captions)):
image_name = f"{idx}.src.png"
mask_file = f"{idx}.mask.png"
# save the image and mask files
image.save(output_dir + image_name)
mask.save(output_dir + mask_file)
# add a new row to the dataframe with the file names and caption
data.append(
{"image_path": image_name, "mask_path": mask_file, "caption": caption},
)
df = pd.DataFrame(columns=["image_path", "mask_path", "caption"], data=data)
# save the dataframe to a CSV file
df.to_csv(os.path.join(output_dir, "captions.csv"), index=False)
def _find_files(pattern, dir="."):
"""Return list of files matching pattern in a given directory, in absolute format.
Unlike glob, this is case-insensitive.
"""
rule = re.compile(fnmatch.translate(pattern), re.IGNORECASE)
return [os.path.join(dir, f) for f in os.listdir(dir) if rule.match(f)]