XCOMET-lite

Links: EMNLP 2024 | Arxiv | Github repository

XCOMET-lite is a distilled version of Unbabel/XCOMET-XXL — a machine translation evaluation model trained to provide an overall quality score between 0 and 1, where 1 represents a perfect translation.

This model uses microsoft/mdeberta-v3-base as its backbone and has 278 million parameters, making it approximately 38 times smaller than the 10.7 billion-parameter XCOMET-XXL.

Quick Start

  1. Clone the GitHub repository.
  2. Create a conda environment as instructed in the README.

Then, run the following code:

from xcomet.deberta_encoder import XCOMETLite

model = XCOMETLite().from_pretrained("myyycroft/XCOMET-lite")
data = [
    {
        "src": "Elon Musk has acquired Twitter and plans significant changes.",
        "mt": "Илон Маск приобрел Twitter и планировал значительные искажения.",
        "ref": "Илон Маск приобрел Twitter и планирует значительные изменения."
    },
    {
        "src": "Elon Musk has acquired Twitter and plans significant changes.",
        "mt": "Илон Маск приобрел Twitter.",
        "ref": "Илон Маск приобрел Twitter и планирует значительные изменения."
    }
]

model_output = model.predict(data, batch_size=2, gpus=1)

print("Segment-level scores:", model_output.scores)
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Model tree for myyycroft/XCOMET-lite

Finetuned
Unbabel/XCOMET-XXL
Finetuned
(1)
this model