Improving README with links and quick start example
Browse files
README.md
CHANGED
@@ -10,6 +10,39 @@ base_model:
|
|
10 |
- Unbabel/XCOMET-XXL
|
11 |
---
|
12 |
|
13 |
-
|
14 |
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
- Unbabel/XCOMET-XXL
|
11 |
---
|
12 |
|
13 |
+
# XCOMET-lite
|
14 |
|
15 |
+
**Links:** [EMNLP 2024](https://aclanthology.org/2024.emnlp-main.1223/) | [Arxiv](https://arxiv.org/abs/2406.14553) | [Github repository](https://github.com/NL2G/xCOMET-lite)
|
16 |
+
|
17 |
+
`XCOMET-lite` is a distilled version of [`Unbabel/XCOMET-XXL`](https://huggingface.co/Unbabel/XCOMET-XXL) — a machine translation evaluation model trained to provide an overall quality score between 0 and 1, where 1 represents a perfect translation.
|
18 |
+
|
19 |
+
This model uses [`microsoft/mdeberta-v3-base`](https://huggingface.co/microsoft/deberta-v3-base) as its backbone and has 278 million parameters, making it approximately 38 times smaller than the 10.7 billion-parameter `XCOMET-XXL`.
|
20 |
+
|
21 |
+
## Quick Start
|
22 |
+
|
23 |
+
1. Clone the [GitHub repository](https://github.com/NL2G/xCOMET-lite).
|
24 |
+
2. Create a conda environment as instructed in the README.
|
25 |
+
|
26 |
+
Then, run the following code:
|
27 |
+
|
28 |
+
```
|
29 |
+
from xcomet.deberta_encoder import XCOMETLite
|
30 |
+
|
31 |
+
model = XCOMETLite().from_pretrained("myyycroft/XCOMET-lite")
|
32 |
+
data = [
|
33 |
+
{
|
34 |
+
"src": "Elon Musk has acquired Twitter and plans significant changes.",
|
35 |
+
"mt": "Илон Маск приобрел Twitter и планировал значительные искажения.",
|
36 |
+
"ref": "Илон Маск приобрел Twitter и планирует значительные изменения."
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"src": "Elon Musk has acquired Twitter and plans significant changes.",
|
40 |
+
"mt": "Илон Маск приобрел Twitter.",
|
41 |
+
"ref": "Илон Маск приобрел Twitter и планирует значительные изменения."
|
42 |
+
}
|
43 |
+
]
|
44 |
+
|
45 |
+
model_output = model.predict(data, batch_size=2, gpus=1)
|
46 |
+
|
47 |
+
print("Segment-level scores:", model_output.scores)
|
48 |
+
```
|