emotion_model

This model is a fine-tuned version of distilbert-base-uncased on the emotion dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3611
  • Accuracy: 0.927

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2619 1.0 250 0.2343 0.916
0.121 2.0 500 0.1432 0.93
0.1308 3.0 750 0.1565 0.9315
0.1012 4.0 1000 0.1595 0.925
0.0525 5.0 1250 0.1937 0.924
0.0635 6.0 1500 0.2635 0.9255
0.0183 7.0 1750 0.2726 0.9195
0.0156 8.0 2000 0.3324 0.9245
0.0036 9.0 2250 0.3614 0.925
0.011 10.0 2500 0.3611 0.927

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
8
Safetensors
Model size
67M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for naamalia23/emotion_model

Finetuned
(7668)
this model

Dataset used to train naamalia23/emotion_model

Evaluation results