nandakishormpai's picture
update model card README.md
93963e4
|
raw
history blame
4.43 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: t5-small-github-repo-tag-generation
    results: []

t5-small-github-repo-tag-generation

This model is a fine-tuned version of t5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6488
  • Rouge1: 25.2912
  • Rouge2: 9.5617
  • Rougel: 22.6455
  • Rougelsum: 22.617
  • Gen Len: 19.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
1.7857 1.0 66 1.2317 2.609 0.0 2.5996 2.6132 19.0
1.2147 2.0 132 1.0105 1.8041 0.0866 1.7432 1.7451 18.9848
1.0625 3.0 198 0.9154 2.5794 0.5266 2.4272 2.4305 19.0
0.9849 4.0 264 0.8615 19.2823 4.6729 17.639 17.6209 19.0
0.9363 5.0 330 0.8248 22.4371 5.4177 20.0806 20.1164 19.0
0.8995 6.0 396 0.7943 24.162 6.1729 21.3733 21.3621 19.0
0.8774 7.0 462 0.7736 24.0765 6.4219 21.2588 21.2715 19.0
0.8544 8.0 528 0.7558 24.4842 6.7685 21.8275 21.8459 19.0
0.8334 9.0 594 0.7416 25.009 7.8025 22.3227 22.3454 19.0
0.8212 10.0 660 0.7300 24.9532 7.9013 22.4275 22.4138 19.0
0.8118 11.0 726 0.7208 25.4191 7.8727 22.696 22.6894 19.0
0.7994 12.0 792 0.7114 25.4852 8.1776 22.4479 22.4522 19.0
0.7904 13.0 858 0.7020 25.4509 8.7603 22.7333 22.7213 19.0
0.7829 14.0 924 0.6958 25.0587 8.9197 22.6393 22.6207 19.0
0.7764 15.0 990 0.6897 25.0867 9.0392 22.6598 22.6808 19.0
0.7703 16.0 1056 0.6841 25.2402 9.3991 22.6384 22.6226 19.0
0.7633 17.0 1122 0.6781 25.7124 9.5485 23.0809 23.0677 19.0
0.7591 18.0 1188 0.6744 25.0679 9.4176 22.5225 22.4913 19.0
0.7553 19.0 1254 0.6695 25.3046 9.2343 22.931 22.8948 19.0
0.7514 20.0 1320 0.6661 25.3134 9.3234 22.8281 22.8198 19.0
0.746 21.0 1386 0.6630 25.3837 9.2876 22.806 22.7907 19.0
0.741 22.0 1452 0.6592 25.4751 9.3792 22.9321 22.9158 19.0
0.7404 23.0 1518 0.6566 25.5734 9.4539 23.0627 23.063 19.0
0.735 24.0 1584 0.6555 25.2529 9.5285 22.6775 22.6504 19.0
0.7334 25.0 1650 0.6536 25.2281 9.4984 22.3494 22.3364 19.0
0.7352 26.0 1716 0.6514 25.3464 9.7302 22.6918 22.6786 19.0
0.7322 27.0 1782 0.6502 25.2349 9.6516 22.6298 22.6005 19.0
0.7333 28.0 1848 0.6492 25.288 9.5646 22.6836 22.6629 19.0
0.7291 29.0 1914 0.6488 25.2912 9.5617 22.6455 22.617 19.0

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1+cu116
  • Datasets 2.10.0
  • Tokenizers 0.13.2