File size: 81,644 Bytes
5e8b7a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
========================
START TIME: Wed Jul  3 21:08:06 UTC 2024
python3 version = Python 3.10.14
========================
The token has not been saved to the git credentials helper. Pass `add_to_git_credential=True` in this function directly or `--add-to-git-credential` if using via `huggingface-cli` if you want to set the git credential as well.
Token is valid (permission: write).
Your token has been saved to /admin/home/ferdinand_mom/.cache/huggingface/token
Login successful
Already on 'bench_cluster'
M	examples/config_tiny_llama.py
M	examples/config_tiny_llama.yaml
M	examples/train_tiny_llama.sh
M	src/nanotron/models/llama.py
M	src/nanotron/trainer.py
Your branch is up to date with 'origin/bench_cluster'.
Job status: RUNNING
W0703 21:08:08.929000 139794302568256 torch/distributed/run.py:757] 
W0703 21:08:08.929000 139794302568256 torch/distributed/run.py:757] *****************************************
W0703 21:08:08.929000 139794302568256 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. 
W0703 21:08:08.929000 139794302568256 torch/distributed/run.py:757] *****************************************
[default0]:07/03/2024 21:08:25 [WARNING|DP=0|PP=0|TP=0|ip-26-0-162-233]: [Vocab Size Padding] Padded vocab (size: 50257) with 1 dummy tokens (new size: 50258)
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: Config:
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: Config(general=GeneralArgs(project='bench_cluster',
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                            run='%date_%jobid',
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                            seed=42,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                            step=None,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                            consumed_train_samples=None,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                            benchmark_csv_path=None,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                            ignore_sanity_checks=True),
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:        parallelism=ParallelismArgs(dp=1,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                                    pp=4,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                                    tp=2,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                                    pp_engine=<nanotron.parallel.pipeline_parallel.engine.OneForwardOneBackwardPipelineEngine object at 0x7fbd74a78670>,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                                    tp_mode=<TensorParallelLinearMode.REDUCE_SCATTER: 2>,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                                    tp_linear_async_communication=False,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                                    expert_parallel_size=1),
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:        model=ModelArgs(model_config=LlamaConfig(bos_token_id=1,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                                                 eos_token_id=2,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                                                 hidden_act='silu',
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                                                 hidden_size=2048,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                                                 initializer_range=0.02,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                                                 intermediate_size=4096,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                                                 is_llama_config=True,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                                                 max_position_embeddings=4096,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                                                 num_attention_heads=32,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                                                 num_hidden_layers=24,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                                                 num_key_value_heads=32,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                                                 pad_token_id=None,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                                                 pretraining_tp=1,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                                                 rms_norm_eps=1e-05,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                                                 rope_scaling=None,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                                                 rope_theta=10000.0,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                                                 tie_word_embeddings=True,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                                                 use_cache=True,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                                                 vocab_size=50258),
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                        init_method=RandomInit(std=0.025),
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                        dtype=torch.bfloat16,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                        make_vocab_size_divisible_by=1,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                        ddp_bucket_cap_mb=25),
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:        tokenizer=TokenizerArgs(tokenizer_name_or_path='openai-community/gpt2',
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                                tokenizer_revision=None,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                                tokenizer_max_length=None),
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:        checkpoints=CheckpointsArgs(checkpoints_path=Path('/dev/null'),
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                                    checkpoint_interval=100000,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                                    save_initial_state=False,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                                    resume_checkpoint_path=None,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                                    checkpoints_path_is_shared_file_system=False),
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:        logging=LoggingArgs(log_level='info',
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                            log_level_replica='info',
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                            iteration_step_info_interval=1),
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:        tokens=TokensArgs(sequence_length=4096,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                          train_steps=20,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                          micro_batch_size=2,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                          batch_accumulation_per_replica=512,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                          val_check_interval=-1,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                          limit_val_batches=0,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                          limit_test_batches=0),
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:        optimizer=OptimizerArgs(optimizer_factory=AdamWOptimizerArgs(adam_eps=1e-08,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                                                                     adam_beta1=0.9,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                                                                     adam_beta2=0.95,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                                                                     torch_adam_is_fused=True,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                                                                     name='adamW'),
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                                zero_stage=1,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                                weight_decay=0.01,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                                clip_grad=1.0,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                                accumulate_grad_in_fp32=True,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                                learning_rate_scheduler=LRSchedulerArgs(learning_rate=0.0001,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                                                                        lr_warmup_steps=1,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                                                                        lr_warmup_style='linear',
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                                                                        lr_decay_style='linear',
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                                                                        lr_decay_steps=19,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                                                                        lr_decay_starting_step=None,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                                                                        min_decay_lr=1e-05)),
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:        data_stages=[DatasetStageArgs(name='Training Stage',
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                                      start_training_step=1,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                                      data=DataArgs(dataset=PretrainDatasetsArgs(hf_dataset_or_datasets='roneneldan/TinyStories',
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                                                                                 hf_dataset_splits='train',
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                                                                                 hf_dataset_config_name=None,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                                                                                 dataset_processing_num_proc_per_process=64,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                                                                                 dataset_overwrite_cache=False,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                                                                                 text_column_name='text'),
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                                                    seed=42,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:                                                    num_loading_workers=0))],
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:        profiler=ProfilerArgs(profiler_export_path=Path('/fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-1_tp-2_pp-4_mbz-2')),
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:        lighteval=None)
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: Model Config:
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: LlamaConfig(bos_token_id=1,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:             eos_token_id=2,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:             hidden_act='silu',
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:             hidden_size=2048,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:             initializer_range=0.02,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:             intermediate_size=4096,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:             is_llama_config=True,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:             max_position_embeddings=4096,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:             num_attention_heads=32,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:             num_hidden_layers=24,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:             num_key_value_heads=32,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:             pad_token_id=None,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:             pretraining_tp=1,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:             rms_norm_eps=1e-05,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:             rope_scaling=None,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:             rope_theta=10000.0,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:             tie_word_embeddings=True,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:             use_cache=True,
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:             vocab_size=50258)
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: Building model..
[default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: Setting PP block ranks...
[default6]:07/03/2024 21:08:39 [INFO|DP=0|PP=3|TP=0|ip-26-0-162-233]: Local number of parameters: 135M (258.20MiB)
[default6]:07/03/2024 21:08:39 [INFO|DP=0|PP=3|TP=0|ip-26-0-162-233]: [After model building] Memory usage: 262.21MiB. Peak allocated: 264.24MiB Peak reserved: 280.00MiB
[default6]:07/03/2024 21:08:39 [INFO|DP=0|PP=3|TP=0|ip-26-0-162-233]: No checkpoint path provided.
[default1]:07/03/2024 21:08:39 [INFO|DP=0|PP=0|TP=1|ip-26-0-162-233]: Local number of parameters: 198M (378.21MiB)
[default1]:07/03/2024 21:08:39 [INFO|DP=0|PP=0|TP=1|ip-26-0-162-233]: [After model building] Memory usage: 385.23MiB. Peak allocated: 387.26MiB Peak reserved: 402.00MiB
[default1]:07/03/2024 21:08:39 [INFO|DP=0|PP=0|TP=1|ip-26-0-162-233]: No checkpoint path provided.
[default2]:07/03/2024 21:08:39 [INFO|DP=0|PP=1|TP=0|ip-26-0-162-233]: Local number of parameters: 147M (280.05MiB)
[default2]:07/03/2024 21:08:39 [INFO|DP=0|PP=1|TP=0|ip-26-0-162-233]: [After model building] Memory usage: 287.07MiB. Peak allocated: 289.10MiB Peak reserved: 302.00MiB
[default2]:07/03/2024 21:08:39 [INFO|DP=0|PP=1|TP=0|ip-26-0-162-233]: No checkpoint path provided.
[default5]:07/03/2024 21:08:39 [INFO|DP=0|PP=2|TP=1|ip-26-0-162-233]: Local number of parameters: 126M (240.05MiB)
[default5]:07/03/2024 21:08:39 [INFO|DP=0|PP=2|TP=1|ip-26-0-162-233]: [After model building] Memory usage: 246.06MiB. Peak allocated: 248.09MiB Peak reserved: 262.00MiB
[default7]:07/03/2024 21:08:39 [INFO|DP=0|PP=3|TP=1|ip-26-0-162-233]: Local number of parameters: 135M (258.20MiB)
[default7]:07/03/2024 21:08:39 [INFO|DP=0|PP=3|TP=1|ip-26-0-162-233]: [After model building] Memory usage: 262.21MiB. Peak allocated: 264.24MiB Peak reserved: 280.00MiB
[default0]:07/03/2024 21:08:39 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: Total number of parameters: 1.21G (2313.02MiB)
[default0]:07/03/2024 21:08:39 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: Local number of parameters: 198M (378.21MiB)
[default0]:07/03/2024 21:08:39 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: [After model building] Memory usage: 385.23MiB. Peak allocated: 387.26MiB Peak reserved: 402.00MiB
[default0]:07/03/2024 21:08:39 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: No checkpoint path provided.
[default0]:07/03/2024 21:08:39 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: Parametrizing model parameters using StandardParametrizator
[default5]:07/03/2024 21:08:39 [INFO|DP=0|PP=2|TP=1|ip-26-0-162-233]: No checkpoint path provided.
[default7]:07/03/2024 21:08:39 [INFO|DP=0|PP=3|TP=1|ip-26-0-162-233]: No checkpoint path provided.
[default4]:07/03/2024 21:08:39 [INFO|DP=0|PP=2|TP=0|ip-26-0-162-233]: Local number of parameters: 126M (240.05MiB)
[default3]:07/03/2024 21:08:39 [INFO|DP=0|PP=1|TP=1|ip-26-0-162-233]: Local number of parameters: 147M (280.05MiB)
[default3]:07/03/2024 21:08:39 [INFO|DP=0|PP=1|TP=1|ip-26-0-162-233]: [After model building] Memory usage: 287.07MiB. Peak allocated: 289.10MiB Peak reserved: 302.00MiB
[default4]:07/03/2024 21:08:39 [INFO|DP=0|PP=2|TP=0|ip-26-0-162-233]: [After model building] Memory usage: 246.06MiB. Peak allocated: 248.09MiB Peak reserved: 262.00MiB
[default4]:07/03/2024 21:08:39 [INFO|DP=0|PP=2|TP=0|ip-26-0-162-233]: No checkpoint path provided.
[default3]:07/03/2024 21:08:39 [INFO|DP=0|PP=1|TP=1|ip-26-0-162-233]: No checkpoint path provided.
[default0]:07/03/2024 21:08:41 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: [Optimizer Building] Using LearningRateForSP as learning rate
[default0]:07/03/2024 21:08:41 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: [ZeRO sharding] Size of optimizer params per rank:
[default0]:07/03/2024 21:08:41 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: [ZeRO sharding] DP Rank 0 has 198M out of 198M (100.00%) params' optimizer states
[default0]:07/03/2024 21:08:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: [Training Plan] Stage Training Stage has 19 remaining training steps and has consumed 0 samples
[default0]:07/03/2024 21:08:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: Using `datasets` library
[default0]:07/03/2024 21:08:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: Loading tokenizer from openai-community/gpt2 and transformers/hf_hub versions ('4.41.2', '0.23.4')
[default0]:Repo card metadata block was not found. Setting CardData to empty.
[default0]:07/03/2024 21:08:42 [WARNING|DP=0|PP=0|TP=0|ip-26-0-162-233]: Repo card metadata block was not found. Setting CardData to empty.
[default0]:07/03/2024 21:08:43 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: [Training Plan] There are 1 training stages 
[default0]:07/03/2024 21:08:43 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: [Stage Training Stage] start from step 1 
[default0]:07/03/2024 21:08:43 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: 
[default0]:07/03/2024 21:08:43 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: [Start training] datetime: 2024-07-03 21:08:43.202168 | mbs: 2 | grad_accum: 512 | global_batch_size: 1024 | sequence_length: 4096 | train_steps: 20 | start_iteration_step: 0 | consumed_train_samples: 0
[default0]:07/03/2024 21:08:43 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: Resuming training from stage Training Stage, it has trained for 0 samples and has 19 remaining train steps
[default0]:07/03/2024 21:08:43 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:  Memory usage: 1898.09MiB. Peak allocated 1898.09MiB. Peak reserved: 1918.00MiB
[default2]:07/03/2024 21:08:43 [WARNING|DP=0|PP=1|TP=0|ip-26-0-162-233]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:07/03/2024 21:08:43 [WARNING|DP=0|PP=2|TP=1|ip-26-0-162-233]: Repo card metadata block was not found. Setting CardData to empty.
[default7]:07/03/2024 21:08:43 [WARNING|DP=0|PP=3|TP=1|ip-26-0-162-233]: Repo card metadata block was not found. Setting CardData to empty.
[default4]:07/03/2024 21:08:43 [WARNING|DP=0|PP=2|TP=0|ip-26-0-162-233]: Repo card metadata block was not found. Setting CardData to empty.
[default4]:Repo card metadata block was not found. Setting CardData to empty.
[default3]:07/03/2024 21:08:43 [WARNING|DP=0|PP=1|TP=1|ip-26-0-162-233]: Repo card metadata block was not found. Setting CardData to empty.
[default2]:Repo card metadata block was not found. Setting CardData to empty.
[default5]:Repo card metadata block was not found. Setting CardData to empty.
[default3]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:Repo card metadata block was not found. Setting CardData to empty.
[default6]:07/03/2024 21:08:43 [WARNING|DP=0|PP=3|TP=0|ip-26-0-162-233]: Repo card metadata block was not found. Setting CardData to empty.
[default1]:Repo card metadata block was not found. Setting CardData to empty.
[default1]:07/03/2024 21:08:43 [WARNING|DP=0|PP=0|TP=1|ip-26-0-162-233]: Repo card metadata block was not found. Setting CardData to empty.
[default6]:Repo card metadata block was not found. Setting CardData to empty.
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default6]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default7]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default5]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default4]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default2]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default3]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default1]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default0]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default6]:  warnings.warn(
[default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default5]:  warnings.warn(
[default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default3]:  warnings.warn(
[default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default2]:  warnings.warn(
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default4]:  warnings.warn(
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default7]:  warnings.warn(
[default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default1]:  warnings.warn(
[default0]:07/03/2024 21:09:28 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:  Memory usage: 1965.66MiB. Peak allocated 11546.57MiB. Peak reserved: 11756.00MiB
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default0]:  warnings.warn(
[default6]:07/03/2024 21:09:35 [INFO|DP=0|PP=3|TP=0|ip-26-0-162-233]: iteration: 1 / 20 | consumed_tokens: 4.19M | elapsed_time_per_iteration_ms: 51.6K | tokens_per_sec: 81.3K | tokens_per_sec_per_gpu: 10.2K | global_batch_size: 1.02K | lm_loss: 11.2 | lr: 0.0001 | model_tflops_per_gpu: 92.2 | hardware_tflops_per_gpu: 92.2 | grad_norm: 14.8 | cuda_memory_allocated: 2.51G | cuda_max_memory_reserved: 5.82G | hd_total_memory_tb: 312G | hd_used_memory_tb: 66.1G | hd_free_memory_tb: 246G
[default0]:07/03/2024 21:09:35 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:  Memory usage: 3478.54MiB. Peak allocated 3478.54MiB. Peak reserved: 11954.00MiB
[default6]:07/03/2024 21:10:02 [INFO|DP=0|PP=3|TP=0|ip-26-0-162-233]: iteration: 2 / 20 | consumed_tokens: 8.39M | elapsed_time_per_iteration_ms: 26.9K | tokens_per_sec: 156K | tokens_per_sec_per_gpu: 19.5K | global_batch_size: 1.02K | lm_loss: 11.2 | lr: 9.53e-05 | model_tflops_per_gpu: 177 | hardware_tflops_per_gpu: 177 | grad_norm: 14.9 | cuda_memory_allocated: 2.51G | cuda_max_memory_reserved: 5.82G | hd_total_memory_tb: 312G | hd_used_memory_tb: 66.1G | hd_free_memory_tb: 246G
[default0]:07/03/2024 21:10:02 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:  Memory usage: 3478.54MiB. Peak allocated 12989.74MiB. Peak reserved: 13342.00MiB
[default0]:07/03/2024 21:10:02 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:  Memory usage: 3478.54MiB. Peak allocated 3478.56MiB. Peak reserved: 13342.00MiB
[default6]:07/03/2024 21:10:29 [INFO|DP=0|PP=3|TP=0|ip-26-0-162-233]: iteration: 3 / 20 | consumed_tokens: 12.6M | elapsed_time_per_iteration_ms: 27K | tokens_per_sec: 155K | tokens_per_sec_per_gpu: 19.4K | global_batch_size: 1.02K | lm_loss: 9.53 | lr: 9.05e-05 | model_tflops_per_gpu: 176 | hardware_tflops_per_gpu: 176 | grad_norm: 35.8 | cuda_memory_allocated: 2.51G | cuda_max_memory_reserved: 5.82G | hd_total_memory_tb: 312G | hd_used_memory_tb: 66.1G | hd_free_memory_tb: 246G
[default0]:07/03/2024 21:10:29 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:  Memory usage: 3478.54MiB. Peak allocated 12989.74MiB. Peak reserved: 13414.00MiB
[default0]:07/03/2024 21:10:29 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:  Memory usage: 3478.54MiB. Peak allocated 3478.56MiB. Peak reserved: 13414.00MiB
[default0]:STAGE:2024-07-03 21:10:29 1812463:1812463 ActivityProfilerController.cpp:314] Completed Stage: Warm Up
[default0]:07/03/2024 21:11:03 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:  Memory usage: 3478.54MiB. Peak allocated 12989.74MiB. Peak reserved: 13414.00MiB
[default0]:07/03/2024 21:11:03 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:  Memory usage: 3478.54MiB. Peak allocated 3478.56MiB. Peak reserved: 13414.00MiB
[default6]:07/03/2024 21:11:03 [INFO|DP=0|PP=3|TP=0|ip-26-0-162-233]: iteration: 4 / 20 | consumed_tokens: 16.8M | elapsed_time_per_iteration_ms: 33.9K | tokens_per_sec: 124K | tokens_per_sec_per_gpu: 15.5K | global_batch_size: 1.02K | lm_loss: 12.3 | lr: 8.58e-05 | model_tflops_per_gpu: 140 | hardware_tflops_per_gpu: 140 | grad_norm: 37.4 | cuda_memory_allocated: 2.51G | cuda_max_memory_reserved: 5.82G | hd_total_memory_tb: 312G | hd_used_memory_tb: 66.1G | hd_free_memory_tb: 246G
[default6]:07/03/2024 21:11:37 [INFO|DP=0|PP=3|TP=0|ip-26-0-162-233]: iteration: 5 / 20 | consumed_tokens: 21M | elapsed_time_per_iteration_ms: 33.7K | tokens_per_sec: 124K | tokens_per_sec_per_gpu: 15.6K | global_batch_size: 1.02K | lm_loss: 9.94 | lr: 8.11e-05 | model_tflops_per_gpu: 141 | hardware_tflops_per_gpu: 141 | grad_norm: 14.1
[default0]:07/03/2024 21:11:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:  Memory usage: 3478.54MiB. Peak allocated 12989.74MiB. Peak reserved: 13414.00MiB
[default6]:07/03/2024 21:12:11 [INFO|DP=0|PP=3|TP=0|ip-26-0-162-233]: iteration: 6 / 20 | consumed_tokens: 25.2M | elapsed_time_per_iteration_ms: 33.7K | tokens_per_sec: 125K | tokens_per_sec_per_gpu: 15.6K | global_batch_size: 1.02K | lm_loss: 9.44 | lr: 7.63e-05 | model_tflops_per_gpu: 141 | hardware_tflops_per_gpu: 141 | grad_norm: 8.14
[default0]:STAGE:2024-07-03 21:13:39 1812463:1812463 ActivityProfilerController.cpp:320] Completed Stage: Collection
[default0]:STAGE:2024-07-03 21:13:48 1812463:1812463 ActivityProfilerController.cpp:324] Completed Stage: Post Processing
[default5]:[rank5]:[E ProcessGroupNCCL.cpp:563] [Rank 2] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=55299, OpType=RECV, NumelIn=7, NumelOut=7, Timeout(ms)=600000) ran for 600016 milliseconds before timing out.
[default7]:[rank7]:[E ProcessGroupNCCL.cpp:563] [Rank 3] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=27651, OpType=RECV, NumelIn=7, NumelOut=7, Timeout(ms)=600000) ran for 600017 milliseconds before timing out.
[default1]:[rank1]:[E ProcessGroupNCCL.cpp:563] [Rank 1] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=178199, OpType=_REDUCE_SCATTER_BASE, NumelIn=16777216, NumelOut=8388608, Timeout(ms)=600000) ran for 600000 milliseconds before timing out.
[default2]:[rank2]:[E ProcessGroupNCCL.cpp:563] [Rank 1] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=55299, OpType=RECV, NumelIn=7, NumelOut=7, Timeout(ms)=600000) ran for 600022 milliseconds before timing out.
[default4]:[rank4]:[E ProcessGroupNCCL.cpp:563] [Rank 2] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=55299, OpType=RECV, NumelIn=7, NumelOut=7, Timeout(ms)=600000) ran for 600026 milliseconds before timing out.
[default3]:[rank3]:[E ProcessGroupNCCL.cpp:563] [Rank 1] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=55299, OpType=RECV, NumelIn=7, NumelOut=7, Timeout(ms)=600000) ran for 600020 milliseconds before timing out.
[default6]:[rank6]:[E ProcessGroupNCCL.cpp:563] [Rank 3] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=27651, OpType=RECV, NumelIn=7, NumelOut=7, Timeout(ms)=600000) ran for 600018 milliseconds before timing out.
[default2]:[rank2]: Traceback (most recent call last):
[default2]:[rank2]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default4]:[rank4]: Traceback (most recent call last):
[default4]:[rank4]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default4]:[rank4]:     trainer.train(dataloader)
[default2]:[rank2]:     trainer.train(dataloader)
[default2]:[rank2]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default4]:[rank4]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default4]:[rank4]:     outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default4]:[rank4]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default4]:[rank4]:     outputs = self.pipeline_engine.train_batch_iter(
[default4]:[rank4]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 252, in train_batch_iter
[default4]:[rank4]:     output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default2]:[rank2]:     outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default2]:[rank2]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default2]:[rank2]:     outputs = self.pipeline_engine.train_batch_iter(
[default2]:[rank2]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 252, in train_batch_iter
[default2]:[rank2]:     output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default2]:[rank2]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default2]:[rank2]:     output = model(**micro_batch)
[default2]:[rank2]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default2]:[rank2]:     return self._call_impl(*args, **kwargs)
[default4]:[rank4]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default4]:[rank4]:     output = model(**micro_batch)
[default4]:[rank4]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default4]:[rank4]:     return self._call_impl(*args, **kwargs)
[default4]:[rank4]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default4]:[rank4]:     return forward_call(*args, **kwargs)
[default4]:[rank4]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default4]:[rank4]:     sharded_logits = self.model(
[default2]:[rank2]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default2]:[rank2]:     return forward_call(*args, **kwargs)
[default2]:[rank2]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default2]:[rank2]:     sharded_logits = self.model(
[default2]:[rank2]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default4]:[rank4]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default4]:[rank4]:     return self._call_impl(*args, **kwargs)
[default4]:[rank4]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default4]:[rank4]:     return forward_call(*args, **kwargs)
[default4]:[rank4]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default4]:[rank4]:     return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default4]:[rank4]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default4]:[rank4]:     hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default4]:[rank4]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default4]:[rank4]:     return self._call_impl(*args, **kwargs)
[default4]:[rank4]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default4]:[rank4]:     return forward_call(*args, **kwargs)
[default4]:[rank4]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 126, in forward
[default2]:[rank2]:     return self._call_impl(*args, **kwargs)
[default2]:[rank2]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default2]:[rank2]:     return forward_call(*args, **kwargs)
[default2]:[rank2]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default2]:[rank2]:     return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default2]:[rank2]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default4]:[rank4]:     new_kwargs[name] = recv_from_pipeline_state_buffer(
[default4]:[rank4]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/functional.py", line 117, in recv_from_pipeline_state_buffer
[default4]:[rank4]:     pipeline_state.run_communication()
[default4]:[rank4]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 150, in run_communication
[default2]:[rank2]:     hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default2]:[rank2]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default2]:[rank2]:     return self._call_impl(*args, **kwargs)
[default4]:[rank4]:     recv_activation_tensor = recv_activation()
[default4]:[rank4]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 31, in __call__
[default4]:[rank4]:     return self.p2p.recv_tensors(num_tensors=1, from_rank=self.from_rank)[0]
[default4]:[rank4]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 353, in recv_tensors
[default4]:[rank4]:     buffers, futures = self.irecv_tensors(num_tensors=num_tensors, from_rank=from_rank, tag=tag)
[default4]:[rank4]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 326, in irecv_tensors
[default4]:[rank4]:     meta = self._recv_meta(from_rank=from_rank, tag=tag)
[default2]:[rank2]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default2]:[rank2]:     return forward_call(*args, **kwargs)
[default2]:[rank2]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 126, in forward
[default4]:[rank4]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 267, in _recv_meta
[default2]:[rank2]:     new_kwargs[name] = recv_from_pipeline_state_buffer(
[default4]:[rank4]:     self.second_metadata = torch.empty(second_metadata_num_elements, dtype=torch.long, device=self.device)
[default4]:[rank4]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate more than 1EB memory.
[default2]:[rank2]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/functional.py", line 117, in recv_from_pipeline_state_buffer
[default2]:[rank2]:     pipeline_state.run_communication()
[default2]:[rank2]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 150, in run_communication
[default2]:[rank2]:     recv_activation_tensor = recv_activation()
[default2]:[rank2]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 31, in __call__
[default2]:[rank2]:     return self.p2p.recv_tensors(num_tensors=1, from_rank=self.from_rank)[0]
[default2]:[rank2]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 353, in recv_tensors
[default2]:[rank2]:     buffers, futures = self.irecv_tensors(num_tensors=num_tensors, from_rank=from_rank, tag=tag)
[default2]:[rank2]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 326, in irecv_tensors
[default2]:[rank2]:     meta = self._recv_meta(from_rank=from_rank, tag=tag)
[default2]:[rank2]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 267, in _recv_meta
[default2]:[rank2]:     self.second_metadata = torch.empty(second_metadata_num_elements, dtype=torch.long, device=self.device)
[default2]:[rank2]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate more than 1EB memory.
[default6]:[rank6]: Traceback (most recent call last):
[default6]:[rank6]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default6]:[rank6]:     trainer.train(dataloader)
[default6]:[rank6]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default6]:[rank6]:     outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default6]:[rank6]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default6]:[rank6]:     outputs = self.pipeline_engine.train_batch_iter(
[default6]:[rank6]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
[default6]:[rank6]:     output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default6]:[rank6]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default6]:[rank6]:     output = model(**micro_batch)
[default6]:[rank6]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default6]:[rank6]:     return self._call_impl(*args, **kwargs)
[default6]:[rank6]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default6]:[rank6]:     return forward_call(*args, **kwargs)
[default6]:[rank6]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default6]:[rank6]:     sharded_logits = self.model(
[default6]:[rank6]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default6]:[rank6]:     return self._call_impl(*args, **kwargs)
[default3]:[rank3]: Traceback (most recent call last):
[default3]:[rank3]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default6]:[rank6]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default3]:[rank3]:     trainer.train(dataloader)
[default3]:[rank3]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default3]:[rank3]:     outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default3]:[rank3]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default6]:[rank6]:     return forward_call(*args, **kwargs)
[default3]:[rank3]:     outputs = self.pipeline_engine.train_batch_iter(
[default6]:[rank6]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default3]:[rank3]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 252, in train_batch_iter
[default6]:[rank6]:     return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default3]:[rank3]:     output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default6]:[rank6]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default3]:[rank3]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default6]:[rank6]:     hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default6]:[rank6]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default3]:[rank3]:     output = model(**micro_batch)
[default3]:[rank3]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default6]:[rank6]:     return self._call_impl(*args, **kwargs)
[default3]:[rank3]:     return self._call_impl(*args, **kwargs)
[default3]:[rank3]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default3]:[rank3]:     return forward_call(*args, **kwargs)
[default3]:[rank3]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default3]:[rank3]:     sharded_logits = self.model(
[default6]:[rank6]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default6]:[rank6]:     return forward_call(*args, **kwargs)
[default3]:[rank3]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default6]:[rank6]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 126, in forward
[default6]:[rank6]:     new_kwargs[name] = recv_from_pipeline_state_buffer(
[default6]:[rank6]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/functional.py", line 117, in recv_from_pipeline_state_buffer
[default3]:[rank3]:     return self._call_impl(*args, **kwargs)
[default3]:[rank3]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default6]:[rank6]:     pipeline_state.run_communication()
[default3]:[rank3]:     return forward_call(*args, **kwargs)
[default3]:[rank3]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default3]:[rank3]:     return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default3]:[rank3]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default3]:[rank3]:     hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default3]:[rank3]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default6]:[rank6]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 150, in run_communication
[default6]:[rank6]:     recv_activation_tensor = recv_activation()
[default3]:[rank3]:     return self._call_impl(*args, **kwargs)
[default3]:[rank3]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default3]:[rank3]:     return forward_call(*args, **kwargs)
[default6]:[rank6]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 31, in __call__
[default3]:[rank3]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 126, in forward
[default6]:[rank6]:     return self.p2p.recv_tensors(num_tensors=1, from_rank=self.from_rank)[0]
[default3]:[rank3]:     new_kwargs[name] = recv_from_pipeline_state_buffer(
[default6]:[rank6]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 353, in recv_tensors
[default6]:[rank6]:     buffers, futures = self.irecv_tensors(num_tensors=num_tensors, from_rank=from_rank, tag=tag)
[default6]:[rank6]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 326, in irecv_tensors
[default3]:[rank3]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/functional.py", line 117, in recv_from_pipeline_state_buffer
[default6]:[rank6]:     meta = self._recv_meta(from_rank=from_rank, tag=tag)
[default3]:[rank3]:     pipeline_state.run_communication()
[default6]:[rank6]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 267, in _recv_meta
[default3]:[rank3]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 150, in run_communication
[default3]:[rank3]:     recv_activation_tensor = recv_activation()
[default3]:[rank3]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 31, in __call__
[default3]:[rank3]:     return self.p2p.recv_tensors(num_tensors=1, from_rank=self.from_rank)[0]
[default3]:[rank3]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 353, in recv_tensors
[default6]:[rank6]:     self.second_metadata = torch.empty(second_metadata_num_elements, dtype=torch.long, device=self.device)
[default6]:[rank6]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate more than 1EB memory.
[default3]:[rank3]:     buffers, futures = self.irecv_tensors(num_tensors=num_tensors, from_rank=from_rank, tag=tag)
[default3]:[rank3]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 326, in irecv_tensors
[default3]:[rank3]:     meta = self._recv_meta(from_rank=from_rank, tag=tag)
[default3]:[rank3]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 267, in _recv_meta
[default3]:[rank3]:     self.second_metadata = torch.empty(second_metadata_num_elements, dtype=torch.long, device=self.device)
[default3]:[rank3]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate more than 1EB memory.
[default5]:[rank5]: Traceback (most recent call last):
[default5]:[rank5]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default5]:[rank5]:     trainer.train(dataloader)
[default5]:[rank5]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default5]:[rank5]:     outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default5]:[rank5]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default5]:[rank5]:     outputs = self.pipeline_engine.train_batch_iter(
[default5]:[rank5]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 252, in train_batch_iter
[default5]:[rank5]:     output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default5]:[rank5]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default5]:[rank5]:     output = model(**micro_batch)
[default5]:[rank5]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default5]:[rank5]:     return self._call_impl(*args, **kwargs)
[default5]:[rank5]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default5]:[rank5]:     return forward_call(*args, **kwargs)
[default5]:[rank5]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default5]:[rank5]:     sharded_logits = self.model(
[default5]:[rank5]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default5]:[rank5]:     return self._call_impl(*args, **kwargs)
[default5]:[rank5]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default5]:[rank5]:     return forward_call(*args, **kwargs)
[default5]:[rank5]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default5]:[rank5]:     return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default5]:[rank5]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default5]:[rank5]:     hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default5]:[rank5]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default5]:[rank5]:     return self._call_impl(*args, **kwargs)
[default5]:[rank5]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default5]:[rank5]:     return forward_call(*args, **kwargs)
[default5]:[rank5]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 126, in forward
[default5]:[rank5]:     new_kwargs[name] = recv_from_pipeline_state_buffer(
[default5]:[rank5]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/functional.py", line 117, in recv_from_pipeline_state_buffer
[default5]:[rank5]:     pipeline_state.run_communication()
[default5]:[rank5]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 150, in run_communication
[default5]:[rank5]:     recv_activation_tensor = recv_activation()
[default5]:[rank5]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 31, in __call__
[default5]:[rank5]:     return self.p2p.recv_tensors(num_tensors=1, from_rank=self.from_rank)[0]
[default5]:[rank5]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 353, in recv_tensors
[default5]:[rank5]:     buffers, futures = self.irecv_tensors(num_tensors=num_tensors, from_rank=from_rank, tag=tag)
[default5]:[rank5]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 326, in irecv_tensors
[default5]:[rank5]:     meta = self._recv_meta(from_rank=from_rank, tag=tag)
[default5]:[rank5]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 267, in _recv_meta
[default5]:[rank5]:     self.second_metadata = torch.empty(second_metadata_num_elements, dtype=torch.long, device=self.device)
[default5]:[rank5]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate more than 1EB memory.
[default7]:[rank7]: Traceback (most recent call last):
[default7]:[rank7]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default7]:[rank7]:     trainer.train(dataloader)
[default7]:[rank7]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default7]:[rank7]:     outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default7]:[rank7]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default7]:[rank7]:     outputs = self.pipeline_engine.train_batch_iter(
[default7]:[rank7]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
[default7]:[rank7]:     output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default7]:[rank7]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default7]:[rank7]:     output = model(**micro_batch)
[default7]:[rank7]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default7]:[rank7]:     return self._call_impl(*args, **kwargs)
[default7]:[rank7]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default7]:[rank7]:     return forward_call(*args, **kwargs)
[default7]:[rank7]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default7]:[rank7]:     sharded_logits = self.model(
[default7]:[rank7]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default7]:[rank7]:     return self._call_impl(*args, **kwargs)
[default7]:[rank7]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default7]:[rank7]:     return forward_call(*args, **kwargs)
[default7]:[rank7]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default7]:[rank7]:     return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default7]:[rank7]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default7]:[rank7]:     hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default7]:[rank7]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default7]:[rank7]:     return self._call_impl(*args, **kwargs)
[default7]:[rank7]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default7]:[rank7]:     return forward_call(*args, **kwargs)
[default7]:[rank7]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 126, in forward
[default7]:[rank7]:     new_kwargs[name] = recv_from_pipeline_state_buffer(
[default7]:[rank7]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/functional.py", line 117, in recv_from_pipeline_state_buffer
[default7]:[rank7]:     pipeline_state.run_communication()
[default7]:[rank7]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 150, in run_communication
[default7]:[rank7]:     recv_activation_tensor = recv_activation()
[default7]:[rank7]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 31, in __call__
[default7]:[rank7]:     return self.p2p.recv_tensors(num_tensors=1, from_rank=self.from_rank)[0]
[default7]:[rank7]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 353, in recv_tensors
[default7]:[rank7]:     buffers, futures = self.irecv_tensors(num_tensors=num_tensors, from_rank=from_rank, tag=tag)
[default7]:[rank7]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 326, in irecv_tensors
[default7]:[rank7]:     meta = self._recv_meta(from_rank=from_rank, tag=tag)
[default7]:[rank7]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 267, in _recv_meta
[default7]:[rank7]:     self.second_metadata = torch.empty(second_metadata_num_elements, dtype=torch.long, device=self.device)
[default7]:[rank7]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate more than 1EB memory.
[default7]:[rank7]:[E ProcessGroupNCCL.cpp:1537] [PG 4 Rank 3] Timeout at NCCL work: 27651, last enqueued NCCL work: 27651, last completed NCCL work: 27650.
[default7]:[rank7]:[E ProcessGroupNCCL.cpp:577] [Rank 3] Some NCCL operations have failed or timed out. Due to the asynchronous nature of CUDA kernels, subsequent GPU operations might run on corrupted/incomplete data.
[default7]:[rank7]:[E ProcessGroupNCCL.cpp:583] [Rank 3] To avoid data inconsistency, we are taking the entire process down.
[default7]:[rank7]:[E ProcessGroupNCCL.cpp:1414] [PG 4 Rank 3] Process group watchdog thread terminated with exception: [Rank 3] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=27651, OpType=RECV, NumelIn=7, NumelOut=7, Timeout(ms)=600000) ran for 600017 milliseconds before timing out.
[default7]:Exception raised from checkTimeout at ../torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp:565 (most recent call first):
[default7]:frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7fe41d450897 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libc10.so)
[default7]:frame #1: c10d::ProcessGroupNCCL::WorkNCCL::checkTimeout(std::optional<std::chrono::duration<long, std::ratio<1l, 1000l> > >) + 0x1d2 (0x7fe41e729c62 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default7]:frame #2: c10d::ProcessGroupNCCL::watchdogHandler() + 0x1a0 (0x7fe41e72ea80 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default7]:frame #3: c10d::ProcessGroupNCCL::ncclCommWatchdog() + 0x10c (0x7fe41e72fdcc in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default7]:frame #4: <unknown function> + 0xd3e95 (0x7fe46a1c8e95 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/../lib/libstdc++.so.6)
[default7]:frame #5: <unknown function> + 0x8609 (0x7fe46f20f609 in /lib/x86_64-linux-gnu/libpthread.so.0)
[default7]:frame #6: clone + 0x43 (0x7fe46efda353 in /lib/x86_64-linux-gnu/libc.so.6)
[default7]:
[default7]:terminate called after throwing an instance of 'c10::DistBackendError'
[default7]:  what():  [PG 4 Rank 3] Process group watchdog thread terminated with exception: [Rank 3] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=27651, OpType=RECV, NumelIn=7, NumelOut=7, Timeout(ms)=600000) ran for 600017 milliseconds before timing out.
[default7]:Exception raised from checkTimeout at ../torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp:565 (most recent call first):
[default7]:frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7fe41d450897 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libc10.so)
[default7]:frame #1: c10d::ProcessGroupNCCL::WorkNCCL::checkTimeout(std::optional<std::chrono::duration<long, std::ratio<1l, 1000l> > >) + 0x1d2 (0x7fe41e729c62 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default7]:frame #2: c10d::ProcessGroupNCCL::watchdogHandler() + 0x1a0 (0x7fe41e72ea80 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default7]:frame #3: c10d::ProcessGroupNCCL::ncclCommWatchdog() + 0x10c (0x7fe41e72fdcc in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default7]:frame #4: <unknown function> + 0xd3e95 (0x7fe46a1c8e95 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/../lib/libstdc++.so.6)
[default7]:frame #5: <unknown function> + 0x8609 (0x7fe46f20f609 in /lib/x86_64-linux-gnu/libpthread.so.0)
[default7]:frame #6: clone + 0x43 (0x7fe46efda353 in /lib/x86_64-linux-gnu/libc.so.6)
[default7]:
[default7]:Exception raised from ncclCommWatchdog at ../torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp:1418 (most recent call first):
[default7]:frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7fe41d450897 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libc10.so)
[default7]:frame #1: <unknown function> + 0xe32119 (0x7fe41e3b3119 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default7]:frame #2: <unknown function> + 0xd3e95 (0x7fe46a1c8e95 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/../lib/libstdc++.so.6)
[default7]:frame #3: <unknown function> + 0x8609 (0x7fe46f20f609 in /lib/x86_64-linux-gnu/libpthread.so.0)
[default7]:frame #4: clone + 0x43 (0x7fe46efda353 in /lib/x86_64-linux-gnu/libc.so.6)
[default7]:
[default6]:[rank6]:[E ProcessGroupNCCL.cpp:1537] [PG 4 Rank 3] Timeout at NCCL work: 27651, last enqueued NCCL work: 27651, last completed NCCL work: 27650.
[default6]:[rank6]:[E ProcessGroupNCCL.cpp:577] [Rank 3] Some NCCL operations have failed or timed out. Due to the asynchronous nature of CUDA kernels, subsequent GPU operations might run on corrupted/incomplete data.
[default6]:[rank6]:[E ProcessGroupNCCL.cpp:583] [Rank 3] To avoid data inconsistency, we are taking the entire process down.
[default6]:[rank6]:[E ProcessGroupNCCL.cpp:1414] [PG 4 Rank 3] Process group watchdog thread terminated with exception: [Rank 3] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=27651, OpType=RECV, NumelIn=7, NumelOut=7, Timeout(ms)=600000) ran for 600018 milliseconds before timing out.
[default6]:Exception raised from checkTimeout at ../torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp:565 (most recent call first):
[default6]:frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7fe17f140897 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libc10.so)
[default6]:frame #1: c10d::ProcessGroupNCCL::WorkNCCL::checkTimeout(std::optional<std::chrono::duration<long, std::ratio<1l, 1000l> > >) + 0x1d2 (0x7fe180419c62 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default6]:frame #2: c10d::ProcessGroupNCCL::watchdogHandler() + 0x1a0 (0x7fe18041ea80 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default6]:frame #3: c10d::ProcessGroupNCCL::ncclCommWatchdog() + 0x10c (0x7fe18041fdcc in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default6]:frame #4: <unknown function> + 0xd3e95 (0x7fe1cbeb8e95 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/../lib/libstdc++.so.6)
[default6]:frame #5: <unknown function> + 0x8609 (0x7fe1d0eff609 in /lib/x86_64-linux-gnu/libpthread.so.0)
[default6]:frame #6: clone + 0x43 (0x7fe1d0cca353 in /lib/x86_64-linux-gnu/libc.so.6)
[default6]:
[default6]:terminate called after throwing an instance of 'c10::DistBackendError'
[default6]:  what():  [PG 4 Rank 3] Process group watchdog thread terminated with exception: [Rank 3] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=27651, OpType=RECV, NumelIn=7, NumelOut=7, Timeout(ms)=600000) ran for 600018 milliseconds before timing out.
[default6]:Exception raised from checkTimeout at ../torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp:565 (most recent call first):
[default6]:frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7fe17f140897 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libc10.so)
[default6]:frame #1: c10d::ProcessGroupNCCL::WorkNCCL::checkTimeout(std::optional<std::chrono::duration<long, std::ratio<1l, 1000l> > >) + 0x1d2 (0x7fe180419c62 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default6]:frame #2: c10d::ProcessGroupNCCL::watchdogHandler() + 0x1a0 (0x7fe18041ea80 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default6]:frame #3: c10d::ProcessGroupNCCL::ncclCommWatchdog() + 0x10c (0x7fe18041fdcc in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default6]:frame #4: <unknown function> + 0xd3e95 (0x7fe1cbeb8e95 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/../lib/libstdc++.so.6)
[default6]:frame #5: <unknown function> + 0x8609 (0x7fe1d0eff609 in /lib/x86_64-linux-gnu/libpthread.so.0)
[default6]:frame #6: clone + 0x43 (0x7fe1d0cca353 in /lib/x86_64-linux-gnu/libc.so.6)
[default6]:
[default6]:Exception raised from ncclCommWatchdog at ../torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp:1418 (most recent call first):
[default6]:frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7fe17f140897 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libc10.so)
[default6]:frame #1: <unknown function> + 0xe32119 (0x7fe1800a3119 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default6]:frame #2: <unknown function> + 0xd3e95 (0x7fe1cbeb8e95 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/../lib/libstdc++.so.6)
[default6]:frame #3: <unknown function> + 0x8609 (0x7fe1d0eff609 in /lib/x86_64-linux-gnu/libpthread.so.0)
[default6]:frame #4: clone + 0x43 (0x7fe1d0cca353 in /lib/x86_64-linux-gnu/libc.so.6)
[default6]:
W0703 21:22:15.080000 139794302568256 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1812463 closing signal SIGTERM
W0703 21:22:15.080000 139794302568256 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1812464 closing signal SIGTERM
W0703 21:22:15.080000 139794302568256 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1812465 closing signal SIGTERM
W0703 21:22:15.080000 139794302568256 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1812466 closing signal SIGTERM
W0703 21:22:15.085000 139794302568256 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1812467 closing signal SIGTERM
W0703 21:22:15.085000 139794302568256 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1812468 closing signal SIGTERM
E0703 21:22:19.843000 139794302568256 torch/distributed/elastic/multiprocessing/api.py:826] failed (exitcode: -6) local_rank: 6 (pid: 1812469) of binary: /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10
Traceback (most recent call last):
  File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/torchrun", line 8, in <module>
    sys.exit(main())
  File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 347, in wrapper
    return f(*args, **kwargs)
  File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 879, in main
    run(args)
  File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 870, in run
    elastic_launch(
  File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 132, in __call__
    return launch_agent(self._config, self._entrypoint, list(args))
  File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 263, in launch_agent
    raise ChildFailedError(
torch.distributed.elastic.multiprocessing.errors.ChildFailedError: 
============================================================
/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py FAILED
------------------------------------------------------------
Failures:
[1]:
  time      : 2024-07-03_21:22:15
  host      : ip-26-0-162-233.ec2.internal
  rank      : 7 (local_rank: 7)
  exitcode  : -6 (pid: 1812470)
  error_file: <N/A>
  traceback : Signal 6 (SIGABRT) received by PID 1812470
------------------------------------------------------------
Root Cause (first observed failure):
[0]:
  time      : 2024-07-03_21:22:15
  host      : ip-26-0-162-233.ec2.internal
  rank      : 6 (local_rank: 6)
  exitcode  : -6 (pid: 1812469)
  error_file: <N/A>
  traceback : Signal 6 (SIGABRT) received by PID 1812469
============================================================
srun: error: ip-26-0-162-233: task 0: Exited with exit code 1
Consider using `hf_transfer` for faster uploads. This solution comes with some limitations. See https://huggingface.co/docs/huggingface_hub/hf_transfer for more details.