3outeille HF staff commited on
Commit
9de07c2
·
verified ·
1 Parent(s): c82fb20

Upload llama-1B/8_GPUS/dp-1_tp-8_pp-1_mbz-128

Browse files
llama-1B/8_GPUS/dp-1_tp-8_pp-1_mbz-128/bench.slurm ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ #SBATCH --job-name=bench_cluster
4
+ #SBATCH --time=02:00:00
5
+ #SBATCH --partition=hopper-prod
6
+ #SBATCH --nodes=1
7
+ #SBATCH --gres=gpu:8
8
+ #SBATCH --qos=normal
9
+ #SBATCH --ntasks-per-node=1
10
+ #SBATCH --cpus-per-task=96
11
+ #SBATCH --exclusive
12
+ #SBATCH --output=/fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-1_tp-8_pp-1_mbz-128/log.out
13
+ #SBATCH --error=/fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-1_tp-8_pp-1_mbz-128/log.out
14
+
15
+ # Function to update status based on squeue output
16
+ update_status() {
17
+ job_id=$1
18
+ status_file=$2
19
+ # For unknown reasons, it doenst update status for pending. It only works for running
20
+ while true; do
21
+ job_status=$(squeue --job $job_id --noheader --format=%T)
22
+ echo "Job status: $job_status"
23
+ if [ -z "$job_status" ]; then
24
+ # Job has finished or is not found
25
+ break
26
+ elif [ "$job_status" = "RUNNING" ]; then
27
+ printf "running" > $status_file
28
+ break
29
+ fi
30
+ sleep 10
31
+ done
32
+ }
33
+
34
+ # Misc initializations.
35
+ echo "========================"
36
+ echo "START TIME: $(date)"
37
+ source /fsx/ferdinandmom/miniforge3/etc/profile.d/conda.sh
38
+ conda activate /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster
39
+ echo python3 version = $(python3 --version)
40
+ echo "========================"
41
+
42
+ # Slurm stuff
43
+ export HOSTNAMES=$(scontrol show hostnames "$SLURM_JOB_NODELIST")
44
+ export MASTER_ADDR=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
45
+ export MASTER_PORT=$((1024 + RANDOM % 64511))
46
+
47
+ export TMPDIR=/scratch
48
+ export HF_DATASETS_CACHE="/admin/home/ferdinand_mom/.cache"
49
+ export CUBLAS_WORKSPACE_CONFIG=":4096:8"
50
+ export CUDA_DEVICE_MAX_CONNECTIONS="1"
51
+
52
+ huggingface-cli login --token $HUGGINGFACE_TOKEN
53
+
54
+
55
+ NANOTRON_REPO="/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron"
56
+ CMD="$NANOTRON_REPO/run_train.py --config-file /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-1_tp-8_pp-1_mbz-128/config.yaml"
57
+
58
+ LAUNCHER="torchrun \
59
+ --nproc_per_node 8 \
60
+ --nnodes 1 \
61
+ --rdzv_endpoint ${MASTER_ADDR}:${MASTER_PORT} \
62
+ --rdzv_backend c10d \
63
+ --max_restarts 0 \
64
+ --tee 3 \
65
+ --node_rank ${SLURM_PROCID}"
66
+
67
+ # Checkout the bench_cluster branch
68
+ cd $NANOTRON_REPO
69
+ git checkout bench_cluster
70
+ cd ..
71
+ # Get the current job ID
72
+ job_id=${SLURM_JOB_ID}
73
+
74
+ # Update status to "pending" or "running" in the background
75
+ update_status $job_id /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-1_tp-8_pp-1_mbz-128/status.txt &
76
+
77
+ # Run the main command
78
+ srun -u $LAUNCHER $CMD
79
+ exit_status=$?
80
+
81
+ # Update status based on the exit status of `srun`
82
+ if [ $exit_status -eq 0 ]; then
83
+ printf "completed" > /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-1_tp-8_pp-1_mbz-128/status.txt
84
+ else
85
+ if grep -q "OutOfMemoryError" /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-1_tp-8_pp-1_mbz-128/log.out; then
86
+ printf "oom" > /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-1_tp-8_pp-1_mbz-128/status.txt
87
+ elif grep -q " CUDA error: an illegal memory access" /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-1_tp-8_pp-1_mbz-128/log.out; then
88
+ printf "oom" > /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-1_tp-8_pp-1_mbz-128/status.txt
89
+ elif grep -q "Timeout at NCCL" /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-1_tp-8_pp-1_mbz-128/log.out; then
90
+ printf "timeout" > /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-1_tp-8_pp-1_mbz-128/status.txt
91
+ else
92
+ printf "fail" > /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-1_tp-8_pp-1_mbz-128/status.txt
93
+ fi
94
+ fi
95
+
96
+ # Run the report script if the job completed successfully
97
+ if [ $exit_status -eq 0 ]; then
98
+ python /fsx/ferdinandmom/ferdinand-hf/bench_cluster/main.py report --inp_dir /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-1_tp-8_pp-1_mbz-128 --is_logs
99
+ python /fsx/ferdinandmom/ferdinand-hf/bench_cluster/main.py report --inp_dir /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-1_tp-8_pp-1_mbz-128 --is_profiler
100
+ fi
101
+
102
+
103
+ # Push to hub the folder using huggingface_cli
104
+ huggingface-cli upload nanotron/bench_cluster /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-1_tp-8_pp-1_mbz-128 llama-1B/8_GPUS/dp-1_tp-8_pp-1_mbz-128 --commit-message "Upload llama-1B/8_GPUS/dp-1_tp-8_pp-1_mbz-128"
105
+
106
+ # Verify the upload
107
+ if [ $? -eq 0 ]; then
108
+ echo "Uploading to Huggingface Hub successful"
109
+ else
110
+ echo "Failed to upload to Huggingface Hub"
111
+ fi
llama-1B/8_GPUS/dp-1_tp-8_pp-1_mbz-128/config.yaml ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ general:
2
+ project: bench_cluster
3
+ seed: 42
4
+ model:
5
+ ddp_bucket_cap_mb: 25
6
+ dtype: bfloat16
7
+ init_method:
8
+ std: 0.025
9
+ make_vocab_size_divisible_by: 1
10
+ model_config:
11
+ bos_token_id: 1
12
+ eos_token_id: 2
13
+ hidden_act: silu
14
+ hidden_size: 2048
15
+ initializer_range: 0.02
16
+ intermediate_size: 4096
17
+ is_llama_config: true
18
+ max_position_embeddings: 4096
19
+ num_attention_heads: 32
20
+ num_hidden_layers: 24
21
+ num_key_value_heads: 32
22
+ pad_token_id: null
23
+ pretraining_tp: 1
24
+ rms_norm_eps: 1.0e-05
25
+ rope_scaling: null
26
+ rope_theta: 10000.0
27
+ tie_word_embeddings: true
28
+ use_cache: true
29
+ vocab_size: 50257
30
+ optimizer:
31
+ accumulate_grad_in_fp32: true
32
+ clip_grad: 1.0
33
+ learning_rate_scheduler:
34
+ learning_rate: 0.0001
35
+ lr_decay_style: linear
36
+ lr_warmup_style: linear
37
+ lr_warmup_steps: 1
38
+ min_decay_lr: 1.0e-05
39
+ optimizer_factory:
40
+ adam_beta1: 0.9
41
+ adam_beta2: 0.95
42
+ adam_eps: 1.0e-08
43
+ name: adamW
44
+ torch_adam_is_fused: true
45
+ weight_decay: 0.01
46
+ zero_stage: 1
47
+ parallelism:
48
+ dp: 1
49
+ expert_parallel_size: 1
50
+ pp: 1
51
+ pp_engine: 1f1b
52
+ tp: 8
53
+ tp_linear_async_communication: false
54
+ tp_mode: REDUCE_SCATTER
55
+ profiler:
56
+ profiler_export_path: /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-1_tp-8_pp-1_mbz-128
57
+ tokenizer:
58
+ tokenizer_max_length: null
59
+ tokenizer_name_or_path: openai-community/gpt2
60
+ tokenizer_revision: null
61
+ data_stages:
62
+ - name: Training Stage
63
+ start_training_step: 1
64
+ data:
65
+ dataset:
66
+ dataset_overwrite_cache: false
67
+ dataset_processing_num_proc_per_process: 64
68
+ hf_dataset_config_name: null
69
+ hf_dataset_or_datasets: roneneldan/TinyStories
70
+ hf_dataset_splits: train
71
+ text_column_name: text
72
+ num_loading_workers: 0
73
+ seed: 42
74
+ lighteval: null
75
+ tokens:
76
+ train_steps: 20
77
+ val_check_interval: -1
78
+ batch_accumulation_per_replica: 8
79
+ limit_test_batches: 0
80
+ limit_val_batches: 0
81
+ micro_batch_size: 128
82
+ sequence_length: 4096
83
+ logging:
84
+ iteration_step_info_interval: 1
85
+ log_level: info
86
+ log_level_replica: info
87
+ checkpoints:
88
+ checkpoint_interval: 100000
89
+ checkpoints_path: /dev/null
90
+ resume_checkpoint_path: null
llama-1B/8_GPUS/dp-1_tp-8_pp-1_mbz-128/log.out ADDED
@@ -0,0 +1,675 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ========================
2
+ START TIME: Thu Jul 4 02:26:55 UTC 2024
3
+ python3 version = Python 3.10.14
4
+ ========================
5
+ The token has not been saved to the git credentials helper. Pass `add_to_git_credential=True` in this function directly or `--add-to-git-credential` if using via `huggingface-cli` if you want to set the git credential as well.
6
+ Token is valid (permission: write).
7
+ Your token has been saved to /admin/home/ferdinand_mom/.cache/huggingface/token
8
+ Login successful
9
+ Already on 'bench_cluster'
10
+ M examples/config_tiny_llama.py
11
+ M examples/config_tiny_llama.yaml
12
+ M examples/train_tiny_llama.sh
13
+ M src/nanotron/models/llama.py
14
+ M src/nanotron/trainer.py
15
+ Your branch is up to date with 'origin/bench_cluster'.
16
+ Job status: RUNNING
17
+ W0704 02:26:57.687000 140135954696000 torch/distributed/run.py:757]
18
+ W0704 02:26:57.687000 140135954696000 torch/distributed/run.py:757] *****************************************
19
+ W0704 02:26:57.687000 140135954696000 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
20
+ W0704 02:26:57.687000 140135954696000 torch/distributed/run.py:757] *****************************************
21
+ [default0]:07/04/2024 02:27:13 [WARNING|DP=0|PP=0|TP=0|ip-26-0-171-88]: [Vocab Size Padding] Padded vocab (size: 50257) with 7 dummy tokens (new size: 50264)
22
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: Config:
23
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: Config(general=GeneralArgs(project='bench_cluster',
24
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: run='%date_%jobid',
25
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: seed=42,
26
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: step=None,
27
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: consumed_train_samples=None,
28
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: benchmark_csv_path=None,
29
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: ignore_sanity_checks=True),
30
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: parallelism=ParallelismArgs(dp=1,
31
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: pp=1,
32
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: tp=8,
33
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: pp_engine=<nanotron.parallel.pipeline_parallel.engine.OneForwardOneBackwardPipelineEngine object at 0x7f2853ec8670>,
34
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: tp_mode=<TensorParallelLinearMode.REDUCE_SCATTER: 2>,
35
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: tp_linear_async_communication=False,
36
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: expert_parallel_size=1),
37
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: model=ModelArgs(model_config=LlamaConfig(bos_token_id=1,
38
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: eos_token_id=2,
39
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: hidden_act='silu',
40
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: hidden_size=2048,
41
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: initializer_range=0.02,
42
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: intermediate_size=4096,
43
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: is_llama_config=True,
44
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: max_position_embeddings=4096,
45
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: num_attention_heads=32,
46
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: num_hidden_layers=24,
47
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: num_key_value_heads=32,
48
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: pad_token_id=None,
49
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: pretraining_tp=1,
50
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: rms_norm_eps=1e-05,
51
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: rope_scaling=None,
52
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: rope_theta=10000.0,
53
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: tie_word_embeddings=True,
54
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: use_cache=True,
55
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: vocab_size=50264),
56
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: init_method=RandomInit(std=0.025),
57
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: dtype=torch.bfloat16,
58
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: make_vocab_size_divisible_by=1,
59
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: ddp_bucket_cap_mb=25),
60
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: tokenizer=TokenizerArgs(tokenizer_name_or_path='openai-community/gpt2',
61
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: tokenizer_revision=None,
62
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: tokenizer_max_length=None),
63
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: checkpoints=CheckpointsArgs(checkpoints_path=Path('/dev/null'),
64
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: checkpoint_interval=100000,
65
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: save_initial_state=False,
66
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: resume_checkpoint_path=None,
67
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: checkpoints_path_is_shared_file_system=False),
68
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: logging=LoggingArgs(log_level='info',
69
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: log_level_replica='info',
70
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: iteration_step_info_interval=1),
71
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: tokens=TokensArgs(sequence_length=4096,
72
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: train_steps=20,
73
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: micro_batch_size=128,
74
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: batch_accumulation_per_replica=8,
75
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: val_check_interval=-1,
76
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: limit_val_batches=0,
77
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: limit_test_batches=0),
78
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: optimizer=OptimizerArgs(optimizer_factory=AdamWOptimizerArgs(adam_eps=1e-08,
79
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: adam_beta1=0.9,
80
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: adam_beta2=0.95,
81
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: torch_adam_is_fused=True,
82
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: name='adamW'),
83
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: zero_stage=1,
84
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: weight_decay=0.01,
85
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: clip_grad=1.0,
86
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: accumulate_grad_in_fp32=True,
87
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: learning_rate_scheduler=LRSchedulerArgs(learning_rate=0.0001,
88
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: lr_warmup_steps=1,
89
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: lr_warmup_style='linear',
90
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: lr_decay_style='linear',
91
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: lr_decay_steps=19,
92
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: lr_decay_starting_step=None,
93
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: min_decay_lr=1e-05)),
94
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: data_stages=[DatasetStageArgs(name='Training Stage',
95
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: start_training_step=1,
96
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: data=DataArgs(dataset=PretrainDatasetsArgs(hf_dataset_or_datasets='roneneldan/TinyStories',
97
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: hf_dataset_splits='train',
98
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: hf_dataset_config_name=None,
99
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: dataset_processing_num_proc_per_process=64,
100
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: dataset_overwrite_cache=False,
101
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: text_column_name='text'),
102
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: seed=42,
103
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: num_loading_workers=0))],
104
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: profiler=ProfilerArgs(profiler_export_path=Path('/fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-1_tp-8_pp-1_mbz-128')),
105
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: lighteval=None)
106
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: Model Config:
107
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: LlamaConfig(bos_token_id=1,
108
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: eos_token_id=2,
109
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: hidden_act='silu',
110
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: hidden_size=2048,
111
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: initializer_range=0.02,
112
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: intermediate_size=4096,
113
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: is_llama_config=True,
114
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: max_position_embeddings=4096,
115
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: num_attention_heads=32,
116
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: num_hidden_layers=24,
117
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: num_key_value_heads=32,
118
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: pad_token_id=None,
119
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: pretraining_tp=1,
120
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: rms_norm_eps=1e-05,
121
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: rope_scaling=None,
122
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: rope_theta=10000.0,
123
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: tie_word_embeddings=True,
124
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: use_cache=True,
125
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: vocab_size=50264)
126
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: Building model..
127
+ [default0]:07/04/2024 02:27:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: Setting PP block ranks...
128
+ [default2]:07/04/2024 02:27:29 [INFO|DP=0|PP=0|TP=2|ip-26-0-171-88]: Local number of parameters: 139M (264.73MiB)
129
+ [default2]:07/04/2024 02:27:29 [INFO|DP=0|PP=0|TP=2|ip-26-0-171-88]: [After model building] Memory usage: 290.76MiB. Peak allocated: 317.33MiB Peak reserved: 324.00MiB
130
+ [default2]:07/04/2024 02:27:29 [INFO|DP=0|PP=0|TP=2|ip-26-0-171-88]: No checkpoint path provided.
131
+ [default3]:07/04/2024 02:27:29 [INFO|DP=0|PP=0|TP=3|ip-26-0-171-88]: Local number of parameters: 139M (264.73MiB)
132
+ [default3]:07/04/2024 02:27:29 [INFO|DP=0|PP=0|TP=3|ip-26-0-171-88]: [After model building] Memory usage: 290.76MiB. Peak allocated: 317.33MiB Peak reserved: 324.00MiB
133
+ [default3]:07/04/2024 02:27:29 [INFO|DP=0|PP=0|TP=3|ip-26-0-171-88]: No checkpoint path provided.
134
+ [default5]:07/04/2024 02:27:29 [INFO|DP=0|PP=0|TP=5|ip-26-0-171-88]: Local number of parameters: 139M (264.73MiB)
135
+ [default5]:07/04/2024 02:27:29 [INFO|DP=0|PP=0|TP=5|ip-26-0-171-88]: [After model building] Memory usage: 290.76MiB. Peak allocated: 317.33MiB Peak reserved: 324.00MiB
136
+ [default5]:07/04/2024 02:27:29 [INFO|DP=0|PP=0|TP=5|ip-26-0-171-88]: No checkpoint path provided.
137
+ [default7]:07/04/2024 02:27:29 [INFO|DP=0|PP=0|TP=7|ip-26-0-171-88]: Local number of parameters: 139M (264.73MiB)
138
+ [default7]:07/04/2024 02:27:29 [INFO|DP=0|PP=0|TP=7|ip-26-0-171-88]: [After model building] Memory usage: 290.76MiB. Peak allocated: 317.33MiB Peak reserved: 324.00MiB
139
+ [default7]:07/04/2024 02:27:29 [INFO|DP=0|PP=0|TP=7|ip-26-0-171-88]: No checkpoint path provided.
140
+ [default0]:07/04/2024 02:27:29 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: Total number of parameters: 1.11G (2117.88MiB)
141
+ [default0]:07/04/2024 02:27:29 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: Local number of parameters: 139M (264.73MiB)
142
+ [default0]:07/04/2024 02:27:29 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: [After model building] Memory usage: 290.76MiB. Peak allocated: 317.33MiB Peak reserved: 324.00MiB
143
+ [default0]:07/04/2024 02:27:29 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: No checkpoint path provided.
144
+ [default0]:07/04/2024 02:27:29 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: Parametrizing model parameters using StandardParametrizator
145
+ [default0]:07/04/2024 02:27:29 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: [Optimizer Building] Using LearningRateForSP as learning rate
146
+ [default0]:07/04/2024 02:27:29 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: [ZeRO sharding] Size of optimizer params per rank:
147
+ [default0]:07/04/2024 02:27:29 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: [ZeRO sharding] DP Rank 0 has 139M out of 139M (100.00%) params' optimizer states
148
+ [default4]:07/04/2024 02:27:29 [INFO|DP=0|PP=0|TP=4|ip-26-0-171-88]: Local number of parameters: 139M (264.73MiB)
149
+ [default4]:07/04/2024 02:27:29 [INFO|DP=0|PP=0|TP=4|ip-26-0-171-88]: [After model building] Memory usage: 290.76MiB. Peak allocated: 317.33MiB Peak reserved: 324.00MiB
150
+ [default6]:07/04/2024 02:27:29 [INFO|DP=0|PP=0|TP=6|ip-26-0-171-88]: Local number of parameters: 139M (264.73MiB)
151
+ [default6]:07/04/2024 02:27:29 [INFO|DP=0|PP=0|TP=6|ip-26-0-171-88]: [After model building] Memory usage: 290.76MiB. Peak allocated: 317.33MiB Peak reserved: 324.00MiB
152
+ [default1]:07/04/2024 02:27:29 [INFO|DP=0|PP=0|TP=1|ip-26-0-171-88]: Local number of parameters: 139M (264.73MiB)
153
+ [default6]:07/04/2024 02:27:29 [INFO|DP=0|PP=0|TP=6|ip-26-0-171-88]: No checkpoint path provided.
154
+ [default4]:07/04/2024 02:27:29 [INFO|DP=0|PP=0|TP=4|ip-26-0-171-88]: No checkpoint path provided.
155
+ [default1]:07/04/2024 02:27:29 [INFO|DP=0|PP=0|TP=1|ip-26-0-171-88]: [After model building] Memory usage: 290.76MiB. Peak allocated: 317.33MiB Peak reserved: 324.00MiB
156
+ [default1]:07/04/2024 02:27:29 [INFO|DP=0|PP=0|TP=1|ip-26-0-171-88]: No checkpoint path provided.
157
+ [default0]:07/04/2024 02:27:30 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: [Training Plan] Stage Training Stage has 19 remaining training steps and has consumed 0 samples
158
+ [default0]:07/04/2024 02:27:30 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: Using `datasets` library
159
+ [default0]:07/04/2024 02:27:30 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: Loading tokenizer from openai-community/gpt2 and transformers/hf_hub versions ('4.41.2', '0.23.4')
160
+ [default0]:07/04/2024 02:27:30 [WARNING|DP=0|PP=0|TP=0|ip-26-0-171-88]: Repo card metadata block was not found. Setting CardData to empty.
161
+ [default0]:Repo card metadata block was not found. Setting CardData to empty.
162
+ [default0]:07/04/2024 02:27:31 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: [Training Plan] There are 1 training stages
163
+ [default0]:07/04/2024 02:27:31 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: [Stage Training Stage] start from step 1
164
+ [default0]:07/04/2024 02:27:31 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]:
165
+ [default0]:07/04/2024 02:27:31 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: [Start training] datetime: 2024-07-04 02:27:31.305830 | mbs: 128 | grad_accum: 8 | global_batch_size: 1024 | sequence_length: 4096 | train_steps: 20 | start_iteration_step: 0 | consumed_train_samples: 0
166
+ [default0]:07/04/2024 02:27:31 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: Resuming training from stage Training Stage, it has trained for 0 samples and has 19 remaining train steps
167
+ [default0]:07/04/2024 02:27:31 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: Memory usage: 1350.75MiB. Peak allocated 1350.76MiB. Peak reserved: 1384.00MiB
168
+ [default2]:07/04/2024 02:27:31 [WARNING|DP=0|PP=0|TP=2|ip-26-0-171-88]: Repo card metadata block was not found. Setting CardData to empty.
169
+ [default5]:07/04/2024 02:27:31 [WARNING|DP=0|PP=0|TP=5|ip-26-0-171-88]: Repo card metadata block was not found. Setting CardData to empty.
170
+ [default4]:Repo card metadata block was not found. Setting CardData to empty.
171
+ [default2]:Repo card metadata block was not found. Setting CardData to empty.
172
+ [default4]:07/04/2024 02:27:31 [WARNING|DP=0|PP=0|TP=4|ip-26-0-171-88]: Repo card metadata block was not found. Setting CardData to empty.
173
+ [default5]:Repo card metadata block was not found. Setting CardData to empty.
174
+ [default3]:07/04/2024 02:27:31 [WARNING|DP=0|PP=0|TP=3|ip-26-0-171-88]: Repo card metadata block was not found. Setting CardData to empty.
175
+ [default1]:Repo card metadata block was not found. Setting CardData to empty.
176
+ [default7]:07/04/2024 02:27:31 [WARNING|DP=0|PP=0|TP=7|ip-26-0-171-88]: Repo card metadata block was not found. Setting CardData to empty.
177
+ [default3]:Repo card metadata block was not found. Setting CardData to empty.
178
+ [default6]:07/04/2024 02:27:31 [WARNING|DP=0|PP=0|TP=6|ip-26-0-171-88]: Repo card metadata block was not found. Setting CardData to empty.
179
+ [default1]:07/04/2024 02:27:31 [WARNING|DP=0|PP=0|TP=1|ip-26-0-171-88]: Repo card metadata block was not found. Setting CardData to empty.
180
+ [default6]:Repo card metadata block was not found. Setting CardData to empty.
181
+ [default7]:Repo card metadata block was not found. Setting CardData to empty.
182
+ [default4]:[rank4]: Traceback (most recent call last):
183
+ [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
184
+ [default4]:[rank4]: trainer.train(dataloader)
185
+ [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
186
+ [default4]:[rank4]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
187
+ [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
188
+ [default4]:[rank4]: outputs = self.pipeline_engine.train_batch_iter(
189
+ [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
190
+ [default4]:[rank4]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
191
+ [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
192
+ [default4]:[rank4]: output = model(**micro_batch)
193
+ [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
194
+ [default4]:[rank4]: return self._call_impl(*args, **kwargs)
195
+ [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
196
+ [default4]:[rank4]: return forward_call(*args, **kwargs)
197
+ [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
198
+ [default4]:[rank4]: sharded_logits = self.model(
199
+ [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
200
+ [default4]:[rank4]: return self._call_impl(*args, **kwargs)
201
+ [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
202
+ [default4]:[rank4]: return forward_call(*args, **kwargs)
203
+ [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
204
+ [default4]:[rank4]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
205
+ [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
206
+ [default4]:[rank4]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
207
+ [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
208
+ [default4]:[rank4]: return self._call_impl(*args, **kwargs)
209
+ [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
210
+ [default4]:[rank4]: return forward_call(*args, **kwargs)
211
+ [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
212
+ [default4]:[rank4]: output = self.pp_block(**new_kwargs)
213
+ [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
214
+ [default4]:[rank4]: return self._call_impl(*args, **kwargs)
215
+ [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
216
+ [default4]:[rank4]: return forward_call(*args, **kwargs)
217
+ [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 637, in forward
218
+ [default1]:[rank1]: Traceback (most recent call last):
219
+ [default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
220
+ [default1]:[rank1]: trainer.train(dataloader)
221
+ [default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
222
+ [default4]:[rank4]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"]
223
+ [default1]:[rank1]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
224
+ [default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
225
+ [default1]:[rank1]: outputs = self.pipeline_engine.train_batch_iter(
226
+ [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
227
+ [default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
228
+ [default1]:[rank1]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
229
+ [default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
230
+ [default4]:[rank4]: return self._call_impl(*args, **kwargs)
231
+ [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
232
+ [default1]:[rank1]: output = model(**micro_batch)
233
+ [default4]:[rank4]: return forward_call(*args, **kwargs)
234
+ [default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
235
+ [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 171, in forward
236
+ [default1]:[rank1]: return self._call_impl(*args, **kwargs)
237
+ [default4]:[rank4]: merged_states = self.gate_up_proj(hidden_states)
238
+ [default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
239
+ [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
240
+ [default1]:[rank1]: return forward_call(*args, **kwargs)
241
+ [default4]:[rank4]: return self._call_impl(*args, **kwargs)
242
+ [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
243
+ [default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
244
+ [default4]:[rank4]: return forward_call(*args, **kwargs)
245
+ [default1]:[rank1]: sharded_logits = self.model(
246
+ [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 87, in forward
247
+ [default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
248
+ [default1]:[rank1]: return self._call_impl(*args, **kwargs)
249
+ [default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
250
+ [default4]:[rank4]: return column_linear(
251
+ [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 359, in column_linear
252
+ [default4]:[rank4]: return F.linear(input, weight, bias)
253
+ [default1]:[rank1]: return forward_call(*args, **kwargs)
254
+ [default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
255
+ [default1]:[rank1]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
256
+ [default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
257
+ [default1]:[rank1]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
258
+ [default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
259
+ [default4]:[rank4]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 MiB. GPU  has a total capacity of 79.33 GiB of which 999.94 MiB is free. Including non-PyTorch memory, this process has 78.34 GiB memory in use. Of the allocated memory 65.93 GiB is allocated by PyTorch, and 685.73 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
260
+ [default1]:[rank1]: return self._call_impl(*args, **kwargs)
261
+ [default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
262
+ [default3]:[rank3]: Traceback (most recent call last):
263
+ [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
264
+ [default1]:[rank1]: return forward_call(*args, **kwargs)
265
+ [default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
266
+ [default1]:[rank1]: output = self.pp_block(**new_kwargs)
267
+ [default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
268
+ [default6]:[rank6]: Traceback (most recent call last):
269
+ [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
270
+ [default3]:[rank3]: trainer.train(dataloader)
271
+ [default1]:[rank1]: return self._call_impl(*args, **kwargs)
272
+ [default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
273
+ [default6]:[rank6]: trainer.train(dataloader)
274
+ [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
275
+ [default1]:[rank1]: return forward_call(*args, **kwargs)
276
+ [default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 637, in forward
277
+ [default6]:[rank6]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
278
+ [default1]:[rank1]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"]
279
+ [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
280
+ [default3]:[rank3]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
281
+ [default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
282
+ [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
283
+ [default1]:[rank1]: return self._call_impl(*args, **kwargs)
284
+ [default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
285
+ [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
286
+ [default1]:[rank1]: return forward_call(*args, **kwargs)
287
+ [default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 171, in forward
288
+ [default6]:[rank6]: outputs = self.pipeline_engine.train_batch_iter(
289
+ [default2]:[rank2]: Traceback (most recent call last):
290
+ [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
291
+ [default3]:[rank3]: outputs = self.pipeline_engine.train_batch_iter(
292
+ [default6]:[rank6]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
293
+ [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
294
+ [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
295
+ [default3]:[rank3]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
296
+ [default2]:[rank2]: trainer.train(dataloader)
297
+ [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
298
+ [default1]:[rank1]: merged_states = self.gate_up_proj(hidden_states)
299
+ [default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
300
+ [default6]:[rank6]: output = model(**micro_batch)
301
+ [default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
302
+ [default6]:[rank6]: return self._call_impl(*args, **kwargs)
303
+ [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
304
+ [default3]:[rank3]: output = model(**micro_batch)
305
+ [default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
306
+ [default6]:[rank6]: return forward_call(*args, **kwargs)
307
+ [default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
308
+ [default3]:[rank3]: return self._call_impl(*args, **kwargs)
309
+ [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
310
+ [default6]:[rank6]: sharded_logits = self.model(
311
+ [default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
312
+ [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
313
+ [default1]:[rank1]: return self._call_impl(*args, **kwargs)
314
+ [default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
315
+ [default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
316
+ [default2]:[rank2]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
317
+ [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
318
+ [default3]:[rank3]: return forward_call(*args, **kwargs)
319
+ [default6]:[rank6]: return self._call_impl(*args, **kwargs)
320
+ [default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
321
+ [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
322
+ [default1]:[rank1]: return forward_call(*args, **kwargs)
323
+ [default2]:[rank2]: outputs = self.pipeline_engine.train_batch_iter(
324
+ [default3]:[rank3]: sharded_logits = self.model(
325
+ [default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 87, in forward
326
+ [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
327
+ [default1]:[rank1]: return column_linear(
328
+ [default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
329
+ [default6]:[rank6]: return forward_call(*args, **kwargs)
330
+ [default2]:[rank2]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
331
+ [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
332
+ [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
333
+ [default6]:[rank6]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
334
+ [default2]:[rank2]: output = model(**micro_batch)
335
+ [default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 359, in column_linear
336
+ [default1]:[rank1]: return F.linear(input, weight, bias)
337
+ [default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
338
+ [default2]:[rank2]: return self._call_impl(*args, **kwargs)
339
+ [default1]:[rank1]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 MiB. GPU  has a total capacity of 79.33 GiB of which 999.94 MiB is free. Including non-PyTorch memory, this process has 78.34 GiB memory in use. Of the allocated memory 65.93 GiB is allocated by PyTorch, and 685.73 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
340
+ [default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
341
+ [default2]:[rank2]: return forward_call(*args, **kwargs)
342
+ [default3]:[rank3]: return self._call_impl(*args, **kwargs)
343
+ [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
344
+ [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
345
+ [default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
346
+ [default6]:[rank6]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
347
+ [default2]:[rank2]: sharded_logits = self.model(
348
+ [default3]:[rank3]: return forward_call(*args, **kwargs)
349
+ [default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
350
+ [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
351
+ [default3]:[rank3]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
352
+ [default6]:[rank6]: return self._call_impl(*args, **kwargs)
353
+ [default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
354
+ [default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
355
+ [default2]:[rank2]: return self._call_impl(*args, **kwargs)
356
+ [default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
357
+ [default6]:[rank6]: return forward_call(*args, **kwargs)
358
+ [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
359
+ [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
360
+ [default3]:[rank3]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
361
+ [default2]:[rank2]: return forward_call(*args, **kwargs)
362
+ [default6]:[rank6]: output = self.pp_block(**new_kwargs)
363
+ [default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
364
+ [default3]:[rank3]: return self._call_impl(*args, **kwargs)
365
+ [default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
366
+ [default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
367
+ [default6]:[rank6]: return self._call_impl(*args, **kwargs)
368
+ [default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
369
+ [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
370
+ [default6]:[rank6]: return forward_call(*args, **kwargs)
371
+ [default3]:[rank3]: return forward_call(*args, **kwargs)
372
+ [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
373
+ [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 637, in forward
374
+ [default3]:[rank3]: output = self.pp_block(**new_kwargs)
375
+ [default2]:[rank2]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
376
+ [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
377
+ [default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
378
+ [default3]:[rank3]: return self._call_impl(*args, **kwargs)
379
+ [default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
380
+ [default6]:[rank6]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"]
381
+ [default2]:[rank2]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
382
+ [default3]:[rank3]: return forward_call(*args, **kwargs)
383
+ [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 637, in forward
384
+ [default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
385
+ [default6]:[rank6]: return self._call_impl(*args, **kwargs)
386
+ [default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
387
+ [default3]:[rank3]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"]
388
+ [default2]:[rank2]: return self._call_impl(*args, **kwargs)
389
+ [default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
390
+ [default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
391
+ [default2]:[rank2]: return forward_call(*args, **kwargs)
392
+ [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
393
+ [default6]:[rank6]: return forward_call(*args, **kwargs)
394
+ [default2]:[rank2]: output = self.pp_block(**new_kwargs)
395
+ [default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
396
+ [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 171, in forward
397
+ [default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
398
+ [default3]:[rank3]: return self._call_impl(*args, **kwargs)
399
+ [default6]:[rank6]: merged_states = self.gate_up_proj(hidden_states)
400
+ [default2]:[rank2]: return self._call_impl(*args, **kwargs)
401
+ [default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
402
+ [default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
403
+ [default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
404
+ [default6]:[rank6]: return self._call_impl(*args, **kwargs)
405
+ [default3]:[rank3]: return forward_call(*args, **kwargs)
406
+ [default2]:[rank2]: return forward_call(*args, **kwargs)
407
+ [default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
408
+ [default6]:[rank6]: return forward_call(*args, **kwargs)
409
+ [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 637, in forward
410
+ [default2]:[rank2]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"]
411
+ [default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
412
+ [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 87, in forward
413
+ [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 171, in forward
414
+ [default6]:[rank6]: return column_linear(
415
+ [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 359, in column_linear
416
+ [default3]:[rank3]: merged_states = self.gate_up_proj(hidden_states)
417
+ [default2]:[rank2]: return self._call_impl(*args, **kwargs)
418
+ [default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
419
+ [default6]:[rank6]: return F.linear(input, weight, bias)
420
+ [default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
421
+ [default3]:[rank3]: return self._call_impl(*args, **kwargs)
422
+ [default2]:[rank2]: return forward_call(*args, **kwargs)
423
+ [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 171, in forward
424
+ [default6]:[rank6]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 MiB. GPU  has a total capacity of 79.33 GiB of which 999.94 MiB is free. Including non-PyTorch memory, this process has 78.34 GiB memory in use. Of the allocated memory 65.93 GiB is allocated by PyTorch, and 685.73 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
425
+ [default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
426
+ [default3]:[rank3]: return forward_call(*args, **kwargs)
427
+ [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 87, in forward
428
+ [default2]:[rank2]: merged_states = self.gate_up_proj(hidden_states)
429
+ [default3]:[rank3]: return column_linear(
430
+ [default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
431
+ [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 359, in column_linear
432
+ [default2]:[rank2]: return self._call_impl(*args, **kwargs)
433
+ [default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
434
+ [default3]:[rank3]: return F.linear(input, weight, bias)
435
+ [default2]:[rank2]: return forward_call(*args, **kwargs)
436
+ [default3]:[rank3]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 MiB. GPU  has a total capacity of 79.33 GiB of which 999.94 MiB is free. Including non-PyTorch memory, this process has 78.34 GiB memory in use. Of the allocated memory 65.93 GiB is allocated by PyTorch, and 685.73 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
437
+ [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 87, in forward
438
+ [default2]:[rank2]: return column_linear(
439
+ [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 359, in column_linear
440
+ [default2]:[rank2]: return F.linear(input, weight, bias)
441
+ [default2]:[rank2]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 MiB. GPU  has a total capacity of 79.33 GiB of which 999.94 MiB is free. Including non-PyTorch memory, this process has 78.34 GiB memory in use. Of the allocated memory 65.93 GiB is allocated by PyTorch, and 685.73 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
442
+ [default0]:[rank0]: Traceback (most recent call last):
443
+ [default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
444
+ [default0]:[rank0]: trainer.train(dataloader)
445
+ [default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
446
+ [default0]:[rank0]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
447
+ [default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
448
+ [default5]:[rank5]: Traceback (most recent call last):
449
+ [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
450
+ [default7]:[rank7]: Traceback (most recent call last):
451
+ [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
452
+ [default7]:[rank7]: trainer.train(dataloader)
453
+ [default0]:[rank0]: outputs = self.pipeline_engine.train_batch_iter(
454
+ [default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
455
+ [default5]:[rank5]: trainer.train(dataloader)
456
+ [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
457
+ [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
458
+ [default7]:[rank7]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
459
+ [default0]:[rank0]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
460
+ [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
461
+ [default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
462
+ [default5]:[rank5]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
463
+ [default0]:[rank0]: output = model(**micro_batch)
464
+ [default7]:[rank7]: outputs = self.pipeline_engine.train_batch_iter(
465
+ [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
466
+ [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
467
+ [default5]:[rank5]: outputs = self.pipeline_engine.train_batch_iter(
468
+ [default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
469
+ [default0]:[rank0]: return self._call_impl(*args, **kwargs)
470
+ [default7]:[rank7]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
471
+ [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
472
+ [default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
473
+ [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
474
+ [default7]:[rank7]: output = model(**micro_batch)
475
+ [default5]:[rank5]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
476
+ [default0]:[rank0]: return forward_call(*args, **kwargs)
477
+ [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
478
+ [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
479
+ [default7]:[rank7]: return self._call_impl(*args, **kwargs)
480
+ [default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
481
+ [default5]:[rank5]: output = model(**micro_batch)
482
+ [default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
483
+ [default5]:[rank5]: return self._call_impl(*args, **kwargs)
484
+ [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
485
+ [default7]:[rank7]: return forward_call(*args, **kwargs)
486
+ [default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
487
+ [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
488
+ [default5]:[rank5]: return forward_call(*args, **kwargs)
489
+ [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
490
+ [default0]:[rank0]: sharded_logits = self.model(
491
+ [default7]:[rank7]: sharded_logits = self.model(
492
+ [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
493
+ [default7]:[rank7]: return self._call_impl(*args, **kwargs)
494
+ [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
495
+ [default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
496
+ [default7]:[rank7]: return forward_call(*args, **kwargs)
497
+ [default0]:[rank0]: return self._call_impl(*args, **kwargs)
498
+ [default5]:[rank5]: sharded_logits = self.model(
499
+ [default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
500
+ [default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
501
+ [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
502
+ [default0]:[rank0]: return forward_call(*args, **kwargs)
503
+ [default5]:[rank5]: return self._call_impl(*args, **kwargs)
504
+ [default7]:[rank7]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
505
+ [default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
506
+ [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
507
+ [default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
508
+ [default7]:[rank7]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
509
+ [default0]:[rank0]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
510
+ [default5]:[rank5]: return forward_call(*args, **kwargs)
511
+ [default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
512
+ [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
513
+ [default7]:[rank7]: return self._call_impl(*args, **kwargs)
514
+ [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
515
+ [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
516
+ [default7]:[rank7]: return forward_call(*args, **kwargs)
517
+ [default5]:[rank5]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
518
+ [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
519
+ [default0]:[rank0]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
520
+ [default7]:[rank7]: output = self.pp_block(**new_kwargs)
521
+ [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
522
+ [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
523
+ [default5]:[rank5]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
524
+ [default7]:[rank7]: return self._call_impl(*args, **kwargs)
525
+ [default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
526
+ [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
527
+ [default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
528
+ [default7]:[rank7]: return forward_call(*args, **kwargs)
529
+ [default0]:[rank0]: return self._call_impl(*args, **kwargs)
530
+ [default5]:[rank5]: return self._call_impl(*args, **kwargs)
531
+ [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 637, in forward
532
+ [default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
533
+ [default0]:[rank0]: return forward_call(*args, **kwargs)
534
+ [default7]:[rank7]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"]
535
+ [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
536
+ [default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
537
+ [default0]:[rank0]: output = self.pp_block(**new_kwargs)
538
+ [default7]:[rank7]: return self._call_impl(*args, **kwargs)
539
+ [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
540
+ [default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
541
+ [default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
542
+ [default0]:[rank0]: return self._call_impl(*args, **kwargs)
543
+ [default5]:[rank5]: return forward_call(*args, **kwargs)
544
+ [default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
545
+ [default7]:[rank7]: return forward_call(*args, **kwargs)
546
+ [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 172, in forward
547
+ [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
548
+ [default0]:[rank0]: return forward_call(*args, **kwargs)
549
+ [default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 637, in forward
550
+ [default7]:[rank7]: hidden_states = self.down_proj(self.split_silu_mul(merged_states))
551
+ [default5]:[rank5]: output = self.pp_block(**new_kwargs)
552
+ [default0]:[rank0]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"]
553
+ [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
554
+ [default7]:[rank7]: return self._call_impl(*args, **kwargs)
555
+ [default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
556
+ [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
557
+ [default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
558
+ [default0]:[rank0]: return self._call_impl(*args, **kwargs)
559
+ [default5]:[rank5]: return self._call_impl(*args, **kwargs)
560
+ [default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
561
+ [default7]:[rank7]: return forward_call(*args, **kwargs)
562
+ [default5]:[rank5]: return forward_call(*args, **kwargs)
563
+ [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 637, in forward
564
+ [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 159, in forward
565
+ [default5]:[rank5]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"]
566
+ [default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
567
+ [default5]:[rank5]: return self._call_impl(*args, **kwargs)
568
+ [default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
569
+ [default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
570
+ [default0]:[rank0]: return forward_call(*args, **kwargs)
571
+ [default5]:[rank5]: return forward_call(*args, **kwargs)
572
+ [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 171, in forward
573
+ [default7]:[rank7]: return row_linear(
574
+ [default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 172, in forward
575
+ [default0]:[rank0]: hidden_states = self.down_proj(self.split_silu_mul(merged_states))
576
+ [default5]:[rank5]: merged_states = self.gate_up_proj(hidden_states)
577
+ [default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
578
+ [default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
579
+ [default0]:[rank0]: return self._call_impl(*args, **kwargs)
580
+ [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 474, in row_linear
581
+ [default7]:[rank7]: out = F.linear(input, weight, bias)
582
+ [default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
583
+ [default0]:[rank0]: return forward_call(*args, **kwargs)
584
+ [default5]:[rank5]: return self._call_impl(*args, **kwargs)
585
+ [default7]:[rank7]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 2.00 GiB. GPU  has a total capacity of 79.33 GiB of which 183.94 MiB is free. Including non-PyTorch memory, this process has 79.14 GiB memory in use. Of the allocated memory 67.93 GiB is allocated by PyTorch, and 173.73 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
586
+ [default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 128, in forward
587
+ [default0]:[rank0]: return self.act(gate_states) * up_states
588
+ [default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
589
+ [default0]:[rank0]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 512.00 MiB. GPU
590
+ [default5]:[rank5]: return forward_call(*args, **kwargs)
591
+ [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 87, in forward
592
+ [default5]:[rank5]: return column_linear(
593
+ [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 359, in column_linear
594
+ [default5]:[rank5]: return F.linear(input, weight, bias)
595
+ [default5]:[rank5]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 MiB. GPU  has a total capacity of 79.33 GiB of which 999.94 MiB is free. Including non-PyTorch memory, this process has 78.34 GiB memory in use. Of the allocated memory 65.93 GiB is allocated by PyTorch, and 685.73 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
596
+ E0704 02:27:47.915000 140135954696000 torch/distributed/elastic/multiprocessing/api.py:826] failed (exitcode: 1) local_rank: 0 (pid: 1143880) of binary: /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10
597
+ Traceback (most recent call last):
598
+ File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/torchrun", line 8, in <module>
599
+ sys.exit(main())
600
+ File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 347, in wrapper
601
+ return f(*args, **kwargs)
602
+ File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 879, in main
603
+ run(args)
604
+ File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 870, in run
605
+ elastic_launch(
606
+ File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 132, in __call__
607
+ return launch_agent(self._config, self._entrypoint, list(args))
608
+ File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 263, in launch_agent
609
+ raise ChildFailedError(
610
+ torch.distributed.elastic.multiprocessing.errors.ChildFailedError:
611
+ ============================================================
612
+ /fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py FAILED
613
+ ------------------------------------------------------------
614
+ Failures:
615
+ [1]:
616
+ time : 2024-07-04_02:27:47
617
+ host : ip-26-0-171-88.ec2.internal
618
+ rank : 1 (local_rank: 1)
619
+ exitcode : 1 (pid: 1143881)
620
+ error_file: <N/A>
621
+ traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
622
+ [2]:
623
+ time : 2024-07-04_02:27:47
624
+ host : ip-26-0-171-88.ec2.internal
625
+ rank : 2 (local_rank: 2)
626
+ exitcode : 1 (pid: 1143882)
627
+ error_file: <N/A>
628
+ traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
629
+ [3]:
630
+ time : 2024-07-04_02:27:47
631
+ host : ip-26-0-171-88.ec2.internal
632
+ rank : 3 (local_rank: 3)
633
+ exitcode : 1 (pid: 1143883)
634
+ error_file: <N/A>
635
+ traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
636
+ [4]:
637
+ time : 2024-07-04_02:27:47
638
+ host : ip-26-0-171-88.ec2.internal
639
+ rank : 4 (local_rank: 4)
640
+ exitcode : 1 (pid: 1143884)
641
+ error_file: <N/A>
642
+ traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
643
+ [5]:
644
+ time : 2024-07-04_02:27:47
645
+ host : ip-26-0-171-88.ec2.internal
646
+ rank : 5 (local_rank: 5)
647
+ exitcode : 1 (pid: 1143885)
648
+ error_file: <N/A>
649
+ traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
650
+ [6]:
651
+ time : 2024-07-04_02:27:47
652
+ host : ip-26-0-171-88.ec2.internal
653
+ rank : 6 (local_rank: 6)
654
+ exitcode : 1 (pid: 1143886)
655
+ error_file: <N/A>
656
+ traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
657
+ [7]:
658
+ time : 2024-07-04_02:27:47
659
+ host : ip-26-0-171-88.ec2.internal
660
+ rank : 7 (local_rank: 7)
661
+ exitcode : 1 (pid: 1143887)
662
+ error_file: <N/A>
663
+ traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
664
+ ------------------------------------------------------------
665
+ Root Cause (first observed failure):
666
+ [0]:
667
+ time : 2024-07-04_02:27:47
668
+ host : ip-26-0-171-88.ec2.internal
669
+ rank : 0 (local_rank: 0)
670
+ exitcode : 1 (pid: 1143880)
671
+ error_file: <N/A>
672
+ traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
673
+ ============================================================
674
+ srun: error: ip-26-0-171-88: task 0: Exited with exit code 1
675
+ Consider using `hf_transfer` for faster uploads. This solution comes with some limitations. See https://huggingface.co/docs/huggingface_hub/hf_transfer for more details.
llama-1B/8_GPUS/dp-1_tp-8_pp-1_mbz-128/status.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ oom