Image Classification
timm
PyTorch
rdnet

Model card for rdnet_small.nv_in1k

A RDNet image classification model. Trained on ImageNet-1k, original torchvision weights.

Model Details

  • Model Type: Image classification / feature backbone
  • Model Stats:
    • Imagenet-1k validation top-1 accuracy: 83.7%
    • Params (M): 50
    • GMACs: 8.7
    • Image size: 224 x 224
  • Papers:
  • Dataset: ImageNet-1k

Model Usage

Image Classification

from urllib.request import urlopen
from PIL import Image
import timm
import torch

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model('rdnet_small.nv_in1k', pretrained=True)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)

Feature Map Extraction

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'rdnet_small.nv_in1k',
    pretrained=True,
    features_only=True,
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

for o in output:
    # print shape of each feature map in output
    # e.g.:
    # torch.Size([1, 264, 56, 56])
    # torch.Size([1, 512, 28, 28])
    # torch.Size([1, 760, 14, 14])
    # torch.Size([1, 1264, 7, 7])

    print(o.shape)

Image Embeddings

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'rdnet_small.nv_in1k',
    pretrained=True,
    num_classes=0,  # remove classifier nn.Linear
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor

# or equivalently (without needing to set num_classes=0)

output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 1264, 7, 7) shaped tensor

output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor

Citation

@misc{kim2024densenets,
    title={DenseNets Reloaded: Paradigm Shift Beyond ResNets and ViTs}, 
    author={Donghyun Kim and Byeongho Heo and Dongyoon Han},
    year={2024},
    eprint={2403.19588},
    archivePrefix={arXiv},
}
Downloads last month
135
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train naver-ai/rdnet_small.nv_in1k

Collection including naver-ai/rdnet_small.nv_in1k