navradio's picture
Model save
fc40293
|
raw
history blame
3.72 kB
metadata
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swin-tiny-patch4-window7-224-finetuned-eurosat
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7722370456736698

swin-tiny-patch4-window7-224-finetuned-eurosat

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4877
  • Accuracy: 0.7722

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 256
  • eval_batch_size: 256
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 1024
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.5611 1.0 392 0.5374 0.7341
0.5299 2.0 784 0.5180 0.7486
0.5289 3.0 1176 0.5049 0.7568
0.5208 4.0 1568 0.4980 0.7622
0.5051 5.0 1960 0.4996 0.7621
0.5035 6.0 2352 0.4890 0.7672
0.5028 7.0 2744 0.4880 0.7685
0.5129 8.0 3136 0.4966 0.7644
0.5014 9.0 3528 0.4895 0.7669
0.4923 10.0 3920 0.4880 0.7702
0.496 11.0 4312 0.4932 0.7673
0.4978 12.0 4704 0.4868 0.7718
0.4993 13.0 5096 0.4827 0.7723
0.4928 14.0 5488 0.4826 0.7724
0.4883 15.0 5880 0.4826 0.7729
0.4951 16.0 6272 0.4815 0.7717
0.4955 17.0 6664 0.4879 0.7700
0.4931 18.0 7056 0.4837 0.7720
0.4803 19.0 7448 0.4841 0.7732
0.4906 20.0 7840 0.4812 0.7737
0.4718 21.0 8232 0.4880 0.7731
0.479 22.0 8624 0.4826 0.7733
0.483 23.0 9016 0.4825 0.7719
0.4748 24.0 9408 0.4828 0.7738
0.4708 25.0 9800 0.4877 0.7722
0.4746 26.0 10192 0.4856 0.7734
0.4659 27.0 10584 0.4879 0.7725
0.4732 28.0 10976 0.4864 0.7721
0.4672 29.0 11368 0.4866 0.7725
0.4677 30.0 11760 0.4877 0.7722

Framework versions

  • Transformers 4.32.0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.4
  • Tokenizers 0.13.3