Edit model card

swinv2-tiny-patch4-window8-256-finetuned-PE

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3083
  • Accuracy: 0.8720

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00025
  • train_batch_size: 256
  • eval_batch_size: 256
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 1024
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.92 9 0.6391 0.6690
0.6873 1.95 19 0.5293 0.7376
0.6233 2.97 29 0.6385 0.6853
0.5976 4.0 39 0.4447 0.7970
0.5552 4.92 48 0.4029 0.8266
0.552 5.95 58 0.3675 0.8429
0.5055 6.97 68 0.3409 0.8581
0.4816 8.0 78 0.3322 0.8615
0.455 8.92 87 0.3166 0.8639
0.4428 9.95 97 0.3100 0.8662
0.4398 10.97 107 0.3713 0.8365
0.4318 12.0 117 0.4019 0.8284
0.4431 12.92 126 0.3074 0.8714
0.4437 13.95 136 0.3156 0.8656
0.4482 14.97 146 0.3516 0.8476
0.4353 16.0 156 0.3162 0.8598
0.4218 16.92 165 0.3018 0.8685
0.4111 17.95 175 0.3143 0.8650
0.4224 18.97 185 0.3146 0.8592
0.4114 20.0 195 0.3097 0.8691
0.4103 20.92 204 0.3038 0.8703
0.3989 21.95 214 0.2893 0.8796
0.3908 22.97 224 0.2956 0.8755
0.3923 24.0 234 0.3041 0.8685
0.3842 24.92 243 0.2876 0.8749
0.3808 25.95 253 0.2907 0.8767
0.382 26.97 263 0.3018 0.8738
0.3816 28.0 273 0.2812 0.8825
0.379 28.92 282 0.2960 0.8633
0.3858 29.95 292 0.2960 0.8743
0.3546 30.97 302 0.2850 0.8807
0.3656 32.0 312 0.2905 0.8784
0.3707 32.92 321 0.2926 0.8743
0.3651 33.95 331 0.2941 0.8796
0.3584 34.97 341 0.3133 0.8615
0.36 36.0 351 0.3181 0.8679
0.3496 36.92 360 0.3036 0.8685
0.3458 37.95 370 0.2939 0.8732
0.3431 38.97 380 0.3062 0.8703
0.3512 40.0 390 0.2914 0.8755
0.3512 40.92 399 0.3164 0.8674
0.3403 41.95 409 0.3063 0.8679
0.3423 42.97 419 0.3018 0.8720
0.3312 44.0 429 0.3094 0.8697
0.3365 44.92 438 0.3062 0.8755
0.3319 45.95 448 0.3081 0.8720
0.3409 46.15 450 0.3083 0.8720

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
9
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for navradio/swinv2-tiny-patch4-window8-256-finetuned-PE

Finetuned
(49)
this model

Evaluation results