|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: google/mt5-small |
|
tags: |
|
- summarization |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: mt5-small-finetuned-amazon-en-es |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mt5-small-finetuned-amazon-en-es |
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 3.0317 |
|
- Rouge1: 16.7841 |
|
- Rouge2: 7.5923 |
|
- Rougel: 16.3966 |
|
- Rougelsum: 16.4835 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:| |
|
| 6.5836 | 1.0 | 1209 | 3.3101 | 15.1215 | 5.97 | 14.6831 | 14.7033 | |
|
| 3.9149 | 2.0 | 2418 | 3.1711 | 17.272 | 8.5255 | 16.8357 | 16.9754 | |
|
| 3.5897 | 3.0 | 3627 | 3.1031 | 17.2062 | 8.8101 | 16.704 | 16.7685 | |
|
| 3.4085 | 4.0 | 4836 | 3.0744 | 17.5033 | 8.5182 | 16.977 | 17.1305 | |
|
| 3.3123 | 5.0 | 6045 | 3.0542 | 17.5048 | 8.1755 | 16.9628 | 17.0698 | |
|
| 3.2467 | 6.0 | 7254 | 3.0375 | 17.1634 | 7.9483 | 16.6977 | 16.8717 | |
|
| 3.2043 | 7.0 | 8463 | 3.0282 | 17.1609 | 8.0724 | 16.7818 | 16.9188 | |
|
| 3.1836 | 8.0 | 9672 | 3.0317 | 16.7841 | 7.5923 | 16.3966 | 16.4835 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.3 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.3 |
|
|