|
--- |
|
license: mit |
|
base_model: roberta-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: fintunned-v2-roberta_GA |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# fintunned-v2-roberta_GA |
|
|
|
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1635 |
|
- Accuracy: 0.9523 |
|
- F1: 0.9527 |
|
- Precision: 0.9534 |
|
- Recall: 0.9523 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 100 |
|
- num_epochs: 3 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| 2.3896 | 0.45 | 50 | 2.2632 | 0.325 | 0.2696 | 0.4504 | 0.3447 | |
|
| 1.2481 | 0.91 | 100 | 0.4536 | 0.8841 | 0.8873 | 0.8940 | 0.8892 | |
|
| 0.3487 | 1.36 | 150 | 0.2978 | 0.9136 | 0.9161 | 0.9186 | 0.9167 | |
|
| 0.2618 | 1.82 | 200 | 0.2472 | 0.9295 | 0.9319 | 0.9362 | 0.9313 | |
|
| 0.2223 | 2.27 | 250 | 0.1872 | 0.9409 | 0.9415 | 0.9445 | 0.9408 | |
|
| 0.076 | 2.73 | 300 | 0.1635 | 0.9523 | 0.9527 | 0.9534 | 0.9523 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.17.0 |
|
- Tokenizers 0.15.1 |
|
|