See axolotl config
axolotl version: 0.6.0
base_model: Qwen/Qwen2.5-7B-Instruct
trust_remote_code: true
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: medalpaca/medical_meadow_medqa
type: alpaca
dataset_prepared_path:
val_set_size: 0.1
output_dir: ./qlora-qwen25-instruct
sequence_len: 2048
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
adapter: qlora
lora_model_dir:
lora_r: 256
lora_alpha: 256
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 1
micro_batch_size: 2
num_epochs: 3
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.00002
train_on_inputs: false
group_by_length: false
bf16: true
fp16:
tf32:
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps:
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
- full_shard
- auto_wrap
fsdp_config:
fsdp_limit_all_gathers: true
fsdp_sync_module_states: true
fsdp_offload_params: true
fsdp_use_orig_params: false
fsdp_cpu_ram_efficient_loading: true
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_transformer_layer_cls_to_wrap: Qwen2DecoderLayer
fsdp_state_dict_type: FULL_STATE_DICT
fsdp_sharding_strategy: FULL_SHARD
special_tokens:
wandb_project: qlora-qwen-25-7b-instruct
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
hub_model_id: neginashz/qlora-qwen-25-7b-instruct-s
hub_strategy:
early_stopping_patience:
resume_from_checkpoint:
auto_resume_from_checkpoints: true
qlora-qwen-25-7b-instruct-s
This model is a fine-tuned version of Qwen/Qwen2.5-7B-Instruct on the medalpaca/medical_meadow_medqa dataset. It achieves the following results on the evaluation set:
- Loss: 0.1608
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 8
- total_eval_batch_size: 8
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 14
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.1216 | 0.2530 | 42 | 0.1267 |
0.1366 | 0.5060 | 84 | 0.1142 |
0.0914 | 0.7590 | 126 | 0.1104 |
0.0814 | 1.0060 | 168 | 0.1050 |
0.0763 | 1.2590 | 210 | 0.1113 |
0.0746 | 1.5120 | 252 | 0.1147 |
0.0467 | 1.7651 | 294 | 0.1125 |
0.0176 | 2.0120 | 336 | 0.1154 |
0.0367 | 2.2651 | 378 | 0.1605 |
0.0349 | 2.5181 | 420 | 0.1571 |
0.0173 | 2.7711 | 462 | 0.1608 |
Framework versions
- PEFT 0.14.0
- Transformers 4.47.0
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.21.0
- Downloads last month
- 2