layoutlm-funsd

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6604
  • Answer: {'precision': 0.6801705756929638, 'recall': 0.788627935723115, 'f1': 0.7303949627933599, 'number': 809}
  • Header: {'precision': 0.26744186046511625, 'recall': 0.19327731092436976, 'f1': 0.224390243902439, 'number': 119}
  • Question: {'precision': 0.7273504273504273, 'recall': 0.7990610328638498, 'f1': 0.7615212527964206, 'number': 1065}
  • Overall Precision: 0.6892
  • Overall Recall: 0.7587
  • Overall F1: 0.7222
  • Overall Accuracy: 0.8010

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.8511 1.0 5 1.7020 {'precision': 0.01627670396744659, 'recall': 0.019777503090234856, 'f1': 0.017857142857142856, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.1516533637400228, 'recall': 0.12488262910798122, 'f1': 0.1369721936148301, 'number': 1065} 0.0801 0.0748 0.0773 0.3370
1.6307 2.0 10 1.5168 {'precision': 0.02522935779816514, 'recall': 0.027194066749072928, 'f1': 0.026174895895300417, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.3611111111111111, 'recall': 0.3295774647887324, 'f1': 0.34462444771723116, 'number': 1065} 0.2023 0.1872 0.1944 0.4120
1.4559 3.0 15 1.3180 {'precision': 0.13717277486910995, 'recall': 0.1619283065512979, 'f1': 0.14852607709750568, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.43218954248366015, 'recall': 0.49671361502347416, 'f1': 0.46221057230231544, 'number': 1065} 0.3029 0.3312 0.3164 0.5472
1.2506 4.0 20 1.1192 {'precision': 0.3774283071230342, 'recall': 0.5043263288009888, 'f1': 0.4317460317460317, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.48876839659178933, 'recall': 0.5924882629107981, 'f1': 0.5356536502546689, 'number': 1065} 0.4380 0.5213 0.4761 0.6396
1.0483 5.0 25 0.9527 {'precision': 0.47378640776699027, 'recall': 0.6032138442521632, 'f1': 0.5307232191408373, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.5771653543307087, 'recall': 0.6882629107981221, 'f1': 0.6278372591006424, 'number': 1065} 0.5299 0.6126 0.5683 0.7009
0.9059 6.0 30 0.8414 {'precision': 0.5864978902953587, 'recall': 0.6872682323856613, 'f1': 0.6328969834945931, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.6246031746031746, 'recall': 0.7389671361502348, 'f1': 0.676989247311828, 'number': 1065} 0.5988 0.6739 0.6341 0.7454
0.7949 7.0 35 0.7834 {'precision': 0.6092066601371204, 'recall': 0.7688504326328801, 'f1': 0.6797814207650272, 'number': 809} {'precision': 0.023809523809523808, 'recall': 0.008403361344537815, 'f1': 0.012422360248447206, 'number': 119} {'precision': 0.6786632390745502, 'recall': 0.7436619718309859, 'f1': 0.7096774193548389, 'number': 1065} 0.6345 0.7100 0.6701 0.7580
0.7124 8.0 40 0.7377 {'precision': 0.6302083333333334, 'recall': 0.7478368355995055, 'f1': 0.6840022611644997, 'number': 809} {'precision': 0.06451612903225806, 'recall': 0.03361344537815126, 'f1': 0.04419889502762431, 'number': 119} {'precision': 0.6704089815557338, 'recall': 0.7849765258215963, 'f1': 0.7231833910034603, 'number': 1065} 0.6368 0.7250 0.6781 0.7760
0.6462 9.0 45 0.7088 {'precision': 0.6338742393509128, 'recall': 0.7725587144622992, 'f1': 0.6963788300835655, 'number': 809} {'precision': 0.1780821917808219, 'recall': 0.1092436974789916, 'f1': 0.13541666666666666, 'number': 119} {'precision': 0.7063829787234043, 'recall': 0.7793427230046949, 'f1': 0.7410714285714286, 'number': 1065} 0.6571 0.7366 0.6946 0.7811
0.6024 10.0 50 0.6971 {'precision': 0.6543340380549683, 'recall': 0.765142150803461, 'f1': 0.7054131054131054, 'number': 809} {'precision': 0.1875, 'recall': 0.12605042016806722, 'f1': 0.1507537688442211, 'number': 119} {'precision': 0.7119932432432432, 'recall': 0.7915492957746478, 'f1': 0.7496665184526455, 'number': 1065} 0.6683 0.7411 0.7028 0.7907
0.573 11.0 55 0.6758 {'precision': 0.6628630705394191, 'recall': 0.7898640296662547, 'f1': 0.7208121827411168, 'number': 809} {'precision': 0.24358974358974358, 'recall': 0.15966386554621848, 'f1': 0.1928934010152284, 'number': 119} {'precision': 0.7289313640312771, 'recall': 0.787793427230047, 'f1': 0.7572202166064983, 'number': 1065} 0.6826 0.7511 0.7152 0.7949
0.5332 12.0 60 0.6668 {'precision': 0.668054110301769, 'recall': 0.7935723114956736, 'f1': 0.7254237288135594, 'number': 809} {'precision': 0.2875, 'recall': 0.19327731092436976, 'f1': 0.23115577889447236, 'number': 119} {'precision': 0.7268041237113402, 'recall': 0.7943661971830986, 'f1': 0.7590847913862719, 'number': 1065} 0.6853 0.7582 0.7199 0.7970
0.5127 13.0 65 0.6634 {'precision': 0.674074074074074, 'recall': 0.7873918417799752, 'f1': 0.726339794754846, 'number': 809} {'precision': 0.26744186046511625, 'recall': 0.19327731092436976, 'f1': 0.224390243902439, 'number': 119} {'precision': 0.7270386266094421, 'recall': 0.7953051643192488, 'f1': 0.7596412556053813, 'number': 1065} 0.6862 0.7561 0.7195 0.7994
0.4919 14.0 70 0.6614 {'precision': 0.6751592356687898, 'recall': 0.7861557478368356, 'f1': 0.7264420331239292, 'number': 809} {'precision': 0.27058823529411763, 'recall': 0.19327731092436976, 'f1': 0.22549019607843138, 'number': 119} {'precision': 0.7242553191489361, 'recall': 0.7990610328638498, 'f1': 0.7598214285714285, 'number': 1065} 0.6857 0.7577 0.7199 0.8017
0.4832 15.0 75 0.6604 {'precision': 0.6801705756929638, 'recall': 0.788627935723115, 'f1': 0.7303949627933599, 'number': 809} {'precision': 0.26744186046511625, 'recall': 0.19327731092436976, 'f1': 0.224390243902439, 'number': 119} {'precision': 0.7273504273504273, 'recall': 0.7990610328638498, 'f1': 0.7615212527964206, 'number': 1065} 0.6892 0.7587 0.7222 0.8010

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.3.1
  • Tokenizers 0.21.0
Downloads last month
13
Safetensors
Model size
113M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for nehajiya8/layoutlm-funsd

Finetuned
(161)
this model