pgd_llama3_16bits_lr0.0002_alpha32_rk4_do0.1_wd1.0e-02
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.9498
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 3
- eval_batch_size: 3
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 12
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.2412 | 0.9867 | 37 | 1.0043 |
0.9676 | 2.0 | 75 | 0.9525 |
0.9473 | 2.9867 | 112 | 0.9120 |
0.8898 | 4.0 | 150 | 0.9089 |
0.9026 | 4.9867 | 187 | 0.9108 |
0.8704 | 6.0 | 225 | 0.9143 |
0.8839 | 6.9867 | 262 | 0.9186 |
0.8483 | 8.0 | 300 | 0.9278 |
0.8532 | 8.9867 | 337 | 0.9429 |
0.8142 | 9.8667 | 370 | 0.9498 |
Framework versions
- PEFT 0.12.0
- Transformers 4.42.4
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 2
Model tree for nelkh/pgd_llama3_16bits_lr0.0002_alpha32_rk4_do0.1_wd1.0e-02
Base model
meta-llama/Meta-Llama-3-8B-Instruct