nepp1d0's picture
update model card README.md
52b7ef2
metadata
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: prot_bert_classification_finetuned_karolina_es_10e
    results: []

prot_bert_classification_finetuned_karolina_es_10e

This model is a fine-tuned version of nepp1d0/prot_bert-finetuned-smiles-bindingDB on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6840
  • Accuracy: 0.88
  • F1: 0.9362
  • Precision: 1.0
  • Recall: 0.88

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 3
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 1.0 4 0.7082 0.02 0.0392 1.0 0.02
No log 2.0 8 0.7073 0.04 0.0769 1.0 0.04
No log 3.0 12 0.7060 0.04 0.0769 1.0 0.04
No log 4.0 16 0.7047 0.04 0.0769 1.0 0.04
No log 5.0 20 0.7034 0.08 0.1481 1.0 0.08
No log 6.0 24 0.7008 0.22 0.3607 1.0 0.22
No log 7.0 28 0.6976 0.22 0.3607 1.0 0.22
No log 8.0 32 0.6933 0.3 0.4615 1.0 0.3
No log 9.0 36 0.6893 0.6 0.7500 1.0 0.6
No log 10.0 40 0.6840 0.88 0.9362 1.0 0.88

Framework versions

  • Transformers 4.23.1
  • Pytorch 1.11.0
  • Datasets 2.6.1
  • Tokenizers 0.13.1