File size: 3,066 Bytes
f14841a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a6390e
f14841a
 
 
3a6390e
 
 
f14841a
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
---
base_model: neuralmagic/Llama-2-7b-pruned70-retrained
inference: true
model_type: llama
pipeline_tag: text-generation
datasets:
  - cerebras/SlimPajama-627B
  - theblackcat102/evol-codealpaca-v1
tags:
- sparse
- code
---

# Llama-2-7b-pruned70-retrained-evolcodealpaca

This repo contains a [70% sparse Llama 2 7B](https://huggingface.co/neuralmagic/Llama-2-7b-pruned70-retrained) finetuned for code generation tasks using the [Evolved CodeAlpaca](https://huggingface.co/datasets/theblackcat102/evol-codealpaca-v1) dataset.

**Authors**: Neural Magic, Cerebras

## Usage

Below we share some code snippets on how to get quickly started with running the model.

### Sparse Transfer

By leveraging a pre-sparsified model's structure, you can efficiently fine-tune on new data, leading to reduced hyperparameter tuning, training times, and computational costs. Learn about this process [here](https://neuralmagic.github.io/docs-v2/get-started/transfer).

### Running the model

This model may be run with the transformers library. For accelerated inference with sparsity, deploy with [nm-vllm](https://github.com/neuralmagic/nm-vllm) or [deepsparse](https://github.com/neuralmagic/deepsparse).

```python
# pip install transformers accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("neuralmagic/Llama-2-7b-pruned70-retrained-evolcodealpaca")
model = AutoModelForCausalLM.from_pretrained("neuralmagic/Llama-2-7b-pruned70-retrained-evolcodealpaca", device_map="auto")

input_text = "def fibonacci(n):\n"
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")

outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0]))
```

## Evaluation Benchmark Results

Model evaluation metrics and results.

| Benchmark                                      | Metric        | Llama-2-7b-evolcodealpaca  | Llama-2-7b-pruned70-retrained-evolcodealpaca |
|------------------------------------------------|---------------|-------------|-------------------------------|
| [HumanEval](https://arxiv.org/abs/2107.03374)  | pass@1        | 32.03       | 33.8                          |

## Model Training Details

This model was obtained by gradual sparse-transfer of the sparse foundational model [Llama-2-7b-pruned50-retrained](https://huggingface.co/neuralmagic/Llama-2-7b-pruned50-retrained) on 60% of the [evolcodealpaca](https://huggingface.co/datasets/theblackcat102/evol-codealpaca-v1) dataset.
The 50% sparse foundational model was finetuned for 2 epochs and then pruned to 70% sparsity using [SparseGPT](https://arxiv.org/abs/2301.00774). Then, the model was finetuned for 1 more epoch with the [SquareHead](https://arxiv.org/abs/2310.06927) knowledge distillation with [Llama-2-7b-evolcodealpaca](https://huggingface.co/neuralmagic/Llama-2-7b-evolcodealpaca) as teacher.


## Help

For further support, and discussions on these models and AI in general, join [Neural Magic's Slack Community](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ)