File size: 8,134 Bytes
2abcd4a
7d1f72d
 
 
2abcd4a
 
 
 
 
 
 
 
 
 
 
7d1f72d
2abcd4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b753ea
2abcd4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8c9e50
 
6b753ea
a8c9e50
6b753ea
2abcd4a
 
 
 
 
 
 
 
 
 
 
 
6b753ea
2abcd4a
 
 
 
 
6b753ea
2abcd4a
6b753ea
2abcd4a
6b753ea
2abcd4a
 
 
 
 
6b753ea
2abcd4a
6b753ea
2abcd4a
6b753ea
2abcd4a
 
 
 
 
 
 
6b753ea
2abcd4a
6b753ea
2abcd4a
 
 
 
 
91a872b
2abcd4a
bb83fe4
91a872b
6b753ea
2abcd4a
 
 
 
 
91a872b
 
6b753ea
2abcd4a
6b753ea
2abcd4a
 
 
 
 
91a872b
2abcd4a
6b753ea
2abcd4a
6b753ea
2abcd4a
 
 
 
 
6b753ea
2abcd4a
6b753ea
2abcd4a
6b753ea
2abcd4a
 
 
 
 
 
 
 
 
 
 
 
6b753ea
2abcd4a
 
 
 
 
 
 
 
 
 
 
6b753ea
2abcd4a
 
 
 
 
 
 
 
 
 
6b753ea
2abcd4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
---
tags:
- int4
- vllm
language:
- en
- de
- fr
- it
- pt
- hi
- es
- th
pipeline_tag: text-generation
license: llama3.1
base_model: meta-llama/Meta-Llama-3.1-405B-Instruct
---

# Meta-Llama-3.1-405B-Instruct-quantized.w4a16

## Model Overview
- **Model Architecture:** Meta-Llama-3
  - **Input:** Text
  - **Output:** Text
- **Model Optimizations:**
  - **Weight quantization:** INT4
- **Intended Use Cases:** Intended for commercial and research use in English. Similarly to [Meta-Llama-3.1-405B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct), this models is intended for assistant-like chat.
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
- **Release Date:** 8/9/2024
- **Version:** 1.0
- **License(s):** Llama3.1
- **Model Developers:** Neural Magic

Quantized version of [Meta-Llama-3.1-405B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct).
It achieves scores within 1% of the scores of the unquantized model for MMLU, ARC-Challenge, GSM-8k, Hellaswag, Winogrande, and TruthfulQA.

### Model Optimizations

This model was obtained by quantizing the weights of [Meta-Llama-3.1-405B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct) to INT4 data type.
This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 75%.

Only the weights of the linear operators within transformers blocks are quantized. Symmetric per-channel quantization is applied, in which a linear scaling per output dimension maps the INT4 and floating point representations of the quantized weights.
The [GPTQ](https://arxiv.org/abs/2210.17323) algorithm is applied for quantization, as implemented in the [llm-compressor](https://github.com/vllm-project/llm-compressor) library. GPTQ used a 1% damping factor and 512 sequences of 4,096 random tokens.


## Deployment

This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.

```python
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer

model_id = "neuralmagic/Meta-Llama-3.1-405B-Instruct-quantized.w4a16"
number_gpus =  8
max_model_len = 4096

sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256)

tokenizer = AutoTokenizer.from_pretrained(model_id)

messages = [
    {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
    {"role": "user", "content": "Who are you?"},
]

prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)

llm = LLM(model=model_id, tensor_parallel_size=number_gpus, max_model_len=max_model_len)

outputs = llm.generate(prompts, sampling_params)

generated_text = outputs[0].outputs[0].text
print(generated_text)
```

vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.


## Creation

This model was created by using the [llm-compressor](https://github.com/vllm-project/llm-compressor) library as presented in the code snipet below.

```python
from transformers import AutoTokenizer
from datasets import Dataset
from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot
from llmcompressor.modifiers.quantization import GPTQModifier
import random

model_id = "meta-llama/Meta-Llama-3.1-405B-Instruct"

num_samples = 512
max_seq_len = 8192

tokenizer = AutoTokenizer.from_pretrained(model_id)

preprocess_fn = lambda example: {"text": "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n{text}".format_map(example)}

dataset_name = "neuralmagic/LLM_compression_calibration"
dataset = load_dataset(dataset_name, split="train")
ds = dataset.shuffle().select(range(num_samples))
ds = ds.map(preprocess_fn)

recipe = GPTQModifier(
  targets="Linear",
  scheme="W4A16",
  ignore=["lm_head"],
  dampening_frac=0.01,
)

model = SparseAutoModelForCausalLM.from_pretrained(
  model_id,
  device_map="auto",
  trust_remote_code=True,
)

oneshot(
  model=model,
  dataset=ds,
  recipe=recipe,
  max_seq_length=max_seq_len,
  num_calibration_samples=num_samples,
)
model.save_pretrained("Meta-Llama-3.1-405B-Instruct-quantized.w4a16")
```


## Evaluation

The model was evaluated on MMLU, ARC-Challenge, GSM-8K, Hellaswag, Winogrande and TruthfulQA.
Evaluation was conducted using the Neural Magic fork of [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct) (branch llama_3.1_instruct) and the [vLLM](https://docs.vllm.ai/en/stable/) engine.
This version of the lm-evaluation-harness includes versions of ARC-Challenge, GSM-8K, and MMLU that match the prompting style of [Meta-Llama-3.1-Instruct-evals](https://huggingface.co/datasets/meta-llama/Meta-Llama-3.1-405B-Instruct-evals).

**Note:** Results have been updated after Meta modified the chat template.

### Accuracy

#### Open LLM Leaderboard evaluation scores
<table>
  <tr>
   <td><strong>Benchmark</strong>
   </td>
   <td><strong>Meta-Llama-3.1-405B-Instruct </strong>
   </td>
   <td><strong>Meta-Llama-3.1-405B-Instruct-quantized.w4a16 (this model)</strong>
   </td>
   <td><strong>Recovery</strong>
   </td>
  </tr>
  <tr>
   <td>MMLU (5-shot)
   </td>
   <td>87.38
   </td>
   <td>87.22
   </td>
   <td>99.8%
   </td>
  </tr>
  <tr>
   <td>ARC Challenge (0-shot)
   </td>
   <td>94.97
   </td>
   <td>95.31
   </td>
   <td>100.4%
   </td>
  </tr>
  <tr>
   <td>GSM-8K (CoT, 8-shot, strict-match)
   </td>
   <td>96.44
   </td>
   <td>96.29
   </td>
   <td>99.8%
   </td>
  </tr>
  <tr>
   <td>Hellaswag (10-shot)
   </td> 
   <td>88.33
   </td>
   <td>88.27
   </td>
   <td>99.9%
   </td>
  </tr>
  <tr>
   <td>Winogrande (5-shot)
   </td>
   <td>87.21
   </td>
   <td>87.37
   </td>
   <td>100.2%
   </td>
  </tr>
  <tr>
   <td>TruthfulQA (0-shot)
   </td>
   <td>64.64
   </td>
   <td>65.26
   </td>
   <td>101.0%
   </td>
  </tr>
  <tr>
   <td><strong>Average</strong>
   </td>
   <td><strong>86.75</strong>
   </td>
   <td><strong>86.76</strong>
   </td>
   <td><strong>100.0%</strong>
   </td>
  </tr>
</table>

### Reproduction

The results were obtained using the following commands:

#### MMLU
```
lm_eval \
  --model vllm \
  --model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-quantized.w4a16",dtype=auto,max_model_len=4096,max_gen_toks=10,tensor_parallel_size=8 \
  --tasks mmlu_llama_3.1_instruct \
  --apply_chat_template \
  --fewshot_as_multiturn \
  --num_fewshot 5 \
  --batch_size auto
```

#### ARC-Challenge
```
lm_eval \
  --model vllm \
  --model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-quantized.w4a16",dtype=auto,max_model_len=4096,tensor_parallel_size=8 \
  --tasks arc_challenge_llama_3.1_instruct \
  --apply_chat_template \
  --num_fewshot 0 \
  --batch_size auto
```

#### GSM-8K
```
lm_eval \
  --model vllm \
  --model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-quantized.w4a16",dtype=auto,max_model_len=4096,tensor_parallel_size=8 \
  --tasks gsm8k_cot_llama_3.1_instruct \
  --apply_chat_template \
  --fewshot_as_multiturn \
  --num_fewshot 8 \
  --batch_size auto
```

#### Hellaswag
```
lm_eval \
  --model vllm \
  --model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-quantized.w4a16",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=8 \
  --tasks hellaswag \
  --num_fewshot 10 \
  --batch_size auto
```

#### Winogrande
```
lm_eval \
  --model vllm \
  --model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-quantized.w4a16",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=8 \
  --tasks winogrande \
  --num_fewshot 5 \
  --batch_size auto
```

#### TruthfulQA
```
lm_eval \
  --model vllm \
  --model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-quantized.w4a16",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=8 \
  --tasks truthfulqa \
  --num_fewshot 0 \
  --batch_size auto
```