metadata
tags:
- bert
- oBERT
- sparsity
- pruning
- compression
language: en
datasets: squad
oBERT-12-downstream-pruned-unstructured-80-squadv1
This model is obtained with The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models.
It corresponds to the model presented in the Table 1 - 30 Epochs - oBERT - SQuADv1 80%
.
Pruning method: oBERT downstream unstructured
Paper: https://arxiv.org/abs/2203.07259
Dataset: SQuADv1
Sparsity: 80%
Number of layers: 12
The dev-set performance reported in the paper is averaged over three seeds, and we release the best model (marked with (*)
):
| oBERT 80% | F1 | EM |
| ------------ | ----- | ----- |
| seed=42 | 88.95 | 82.08 |
| seed=3407 (*)| 89.16 | 82.05 |
| seed=54321 | 89.01 | 82.12 |
| ------------ | ----- | ----- |
| mean | 89.04 | 82.08 |
| stdev | 0.108 | 0.035 |
Code: https://github.com/neuralmagic/sparseml/tree/main/research/optimal_BERT_surgeon_oBERT
If you find the model useful, please consider citing our work.
Citation info
@article{kurtic2022optimal,
title={The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models},
author={Kurtic, Eldar and Campos, Daniel and Nguyen, Tuan and Frantar, Elias and Kurtz, Mark and Fineran, Benjamin and Goin, Michael and Alistarh, Dan},
journal={arXiv preprint arXiv:2203.07259},
year={2022}
}