oBERT-12-upstream-pruned-unstructured-97-finetuned-qqp-v2
This model is obtained with The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models.
It corresponds to the model presented in the Table 2 - oBERT - QQP 97%
(in the upcoming updated version of the paper).
Pruning method: oBERT upstream unstructured + sparse-transfer to downstream
Paper: https://arxiv.org/abs/2203.07259
Dataset: QQP
Sparsity: 97%
Number of layers: 12
The dev-set performance reported in the paper is averaged over four seeds, and we release the best model (marked with (*)
):
| oBERT 97% | acc | F1 |
| ------------ | ----- | ----- |
| seed=42 (*)| 90.42 | 87.09 |
| seed=3407 | 90.31 | 86.87 |
| seed=123 | 90.20 | 86.76 |
| seed=12345 | 90.39 | 87.16 |
| ------------ | ----- | ----- |
| mean | 90.33 | 86.97 |
| stdev | 0.098 | 0.186 |
Code: coming soon
BibTeX entry and citation info
@article{kurtic2022optimal,
title={The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models},
author={Kurtic, Eldar and Campos, Daniel and Nguyen, Tuan and Frantar, Elias and Kurtz, Mark and Fineran, Benjamin and Goin, Michael and Alistarh, Dan},
journal={arXiv preprint arXiv:2203.07259},
year={2022}
}