metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- favsbot
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-base-cased-NER-favsbot-no-apostrophe-2022-11-07
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: favsbot
type: favsbot
config: default
split: train
args: default
metrics:
- name: Precision
type: precision
value: 0.8275862068965517
- name: Recall
type: recall
value: 0.96
- name: F1
type: f1
value: 0.888888888888889
- name: Accuracy
type: accuracy
value: 0.9444444444444444
bert-base-cased-NER-favsbot-no-apostrophe-2022-11-07
This model is a fine-tuned version of bert-base-cased on the favsbot dataset. It achieves the following results on the evaluation set:
- Loss: 0.1169
- Precision: 0.8276
- Recall: 0.96
- F1: 0.8889
- Accuracy: 0.9444
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 10 | 1.6302 | 0.0 | 0.0 | 0.0 | 0.5972 |
No log | 2.0 | 20 | 1.0453 | 0.6667 | 0.08 | 0.1429 | 0.6389 |
No log | 3.0 | 30 | 0.7286 | 0.8421 | 0.64 | 0.7273 | 0.8472 |
No log | 4.0 | 40 | 0.5296 | 0.8 | 0.8 | 0.8000 | 0.8889 |
No log | 5.0 | 50 | 0.3960 | 0.8214 | 0.92 | 0.8679 | 0.9306 |
No log | 6.0 | 60 | 0.2987 | 0.8214 | 0.92 | 0.8679 | 0.9306 |
No log | 7.0 | 70 | 0.2424 | 0.8276 | 0.96 | 0.8889 | 0.9444 |
No log | 8.0 | 80 | 0.2151 | 0.8276 | 0.96 | 0.8889 | 0.9444 |
No log | 9.0 | 90 | 0.1815 | 0.8276 | 0.96 | 0.8889 | 0.9444 |
No log | 10.0 | 100 | 0.1675 | 0.8276 | 0.96 | 0.8889 | 0.9444 |
No log | 11.0 | 110 | 0.1504 | 0.8276 | 0.96 | 0.8889 | 0.9444 |
No log | 12.0 | 120 | 0.1410 | 0.8276 | 0.96 | 0.8889 | 0.9444 |
No log | 13.0 | 130 | 0.1350 | 0.8276 | 0.96 | 0.8889 | 0.9444 |
No log | 14.0 | 140 | 0.1281 | 0.8276 | 0.96 | 0.8889 | 0.9444 |
No log | 15.0 | 150 | 0.1239 | 0.8276 | 0.96 | 0.8889 | 0.9444 |
No log | 16.0 | 160 | 0.1190 | 0.8276 | 0.96 | 0.8889 | 0.9444 |
No log | 17.0 | 170 | 0.1187 | 0.8276 | 0.96 | 0.8889 | 0.9444 |
No log | 18.0 | 180 | 0.1180 | 0.8276 | 0.96 | 0.8889 | 0.9444 |
No log | 19.0 | 190 | 0.1170 | 0.8276 | 0.96 | 0.8889 | 0.9444 |
No log | 20.0 | 200 | 0.1169 | 0.8276 | 0.96 | 0.8889 | 0.9444 |
Framework versions
- Transformers 4.21.1
- Pytorch 1.12.1
- Datasets 2.4.0
- Tokenizers 0.12.1