nguyennghia0902's picture
Training in progress epoch 9
4a17cce
|
raw
history blame
3.87 kB
metadata
license: apache-2.0
base_model: google/electra-small-discriminator
tags:
  - generated_from_keras_callback
model-index:
  - name: nguyennghia0902/electra-small-discriminator_5e-05_32
    results: []

nguyennghia0902/electra-small-discriminator_5e-05_32

This model is a fine-tuned version of google/electra-small-discriminator on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 1.4462
  • Train End Logits Accuracy: 0.6364
  • Train Start Logits Accuracy: 0.6099
  • Validation Loss: 1.1013
  • Validation End Logits Accuracy: 0.7152
  • Validation Start Logits Accuracy: 0.7045
  • Epoch: 9

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 15630, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Train End Logits Accuracy Train Start Logits Accuracy Validation Loss Validation End Logits Accuracy Validation Start Logits Accuracy Epoch
3.1881 0.3010 0.2689 2.5228 0.4049 0.3836 0
2.5007 0.4217 0.3882 2.0728 0.5036 0.4895 1
2.2043 0.4835 0.4496 1.8175 0.5578 0.5406 2
2.0197 0.5187 0.4879 1.6380 0.5947 0.5795 3
1.8749 0.5476 0.5157 1.4806 0.6256 0.6152 4
1.7536 0.5717 0.5421 1.3605 0.6524 0.6404 5
1.6484 0.5931 0.5631 1.2566 0.6796 0.6667 6
1.5646 0.6133 0.5839 1.1845 0.6976 0.6855 7
1.4907 0.6288 0.5993 1.1223 0.7084 0.6998 8
1.4462 0.6364 0.6099 1.1013 0.7152 0.7045 9

Framework versions

  • Transformers 4.39.3
  • TensorFlow 2.15.0
  • Datasets 2.18.0
  • Tokenizers 0.15.2