metadata
license: apache-2.0
base_model: google/electra-small-discriminator
tags:
- generated_from_keras_callback
model-index:
- name: nguyennghia0902/electra-small-discriminator_5e-05_32
results: []
nguyennghia0902/electra-small-discriminator_5e-05_32
This model is a fine-tuned version of google/electra-small-discriminator on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 1.4462
- Train End Logits Accuracy: 0.6364
- Train Start Logits Accuracy: 0.6099
- Validation Loss: 1.1013
- Validation End Logits Accuracy: 0.7152
- Validation Start Logits Accuracy: 0.7045
- Epoch: 9
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 15630, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch |
---|---|---|---|---|---|---|
3.1881 | 0.3010 | 0.2689 | 2.5228 | 0.4049 | 0.3836 | 0 |
2.5007 | 0.4217 | 0.3882 | 2.0728 | 0.5036 | 0.4895 | 1 |
2.2043 | 0.4835 | 0.4496 | 1.8175 | 0.5578 | 0.5406 | 2 |
2.0197 | 0.5187 | 0.4879 | 1.6380 | 0.5947 | 0.5795 | 3 |
1.8749 | 0.5476 | 0.5157 | 1.4806 | 0.6256 | 0.6152 | 4 |
1.7536 | 0.5717 | 0.5421 | 1.3605 | 0.6524 | 0.6404 | 5 |
1.6484 | 0.5931 | 0.5631 | 1.2566 | 0.6796 | 0.6667 | 6 |
1.5646 | 0.6133 | 0.5839 | 1.1845 | 0.6976 | 0.6855 | 7 |
1.4907 | 0.6288 | 0.5993 | 1.1223 | 0.7084 | 0.6998 | 8 |
1.4462 | 0.6364 | 0.6099 | 1.1013 | 0.7152 | 0.7045 | 9 |
Framework versions
- Transformers 4.39.3
- TensorFlow 2.15.0
- Datasets 2.18.0
- Tokenizers 0.15.2